Abstract:
A residue block in a stage of a pipeline ADC processing differential signals contains multiple pairs of capacitors. During a hold phase of operation, one capacitor of a pair is connected to a positive reference voltage, and the other capacitor is connected to a negative reference voltage if the input signal exceeds a corresponding threshold voltage. When the input signal does not exceed the corresponding threshold voltage, both capacitors of the pair are connected either to the positive or the negative reference voltage. As a result, the need for a common mode reference voltage may be eliminated, and the residue block can be implemented with a smaller area.
Abstract:
The present invention is related to an analogue-to-digital (A/D) converter comprising at least two voltage comparator devices. Each of the voltage comparator devices is arranged for being fed with a same input signal and for generating an own internal voltage reference. The two internal voltage references are different. Each voltage comparator is arranged for generating an output signal indicative of a bit position of a digital approximation of said input signal.
Abstract:
A residue block in a stage of a pipeline ADC processing differential signals contains multiple pairs of capacitors. During a hold phase of operation, one capacitor of a pair is connected to a positive reference voltage, and the other capacitor is connected to a negative reference voltage if the input signal exceeds a corresponding threshold voltage. When the input signal does not exceed the corresponding threshold voltage, both capacitors of the pair are connected either to the positive or the negative reference voltage. As a result, the need for a common mode reference voltage may be eliminated, and the residue block can be implemented with a smaller area.
Abstract:
An A-D converter includes a plurality of comparators, each of which compares an analog input signal to analog threshold values; an upper field determination section which, during an upper determination phase, supplies in parallel to each of the plurality of comparators the plurality of analog threshold values expressing boundaries of ranges corresponding to each data value acquired from the upper field of a number of bits previously designated in the digital output signal, detects whether the analog input signal is associated with one of the ranges based on comparison results by the plurality of comparators, and narrows data values of the upper field to data values corresponding to a range between the largest analog threshold value less than or equal to the analog input signal and the smallest analog threshold value greater than or equal to the analog input signal; and a lower field determination section which, during the lower determination phase, determines values of conversion target bits based on a plurality of comparison results of the plurality of comparators.
Abstract:
An A-D converter that outputs a digital output signal obtained by digitalizing an analog input signal includes a plurality of comparators that each compare the analog input signal and an analog threshold value based on designated digital threshold data, a high-order field determining section that narrows down a data value corresponding to a high-order field of a predetermined bit number in the digital output signal based on a plurality of comparison results obtained by supplying threshold data different from one another to the plurality of comparators, a low-order field computing section that computes a plurality of candidate values for a data value corresponding to a low-order field of a predetermined bit number located at a side lower than the high-order field, and a low-order field determining section that determines a data value corresponding to the low-order field based on the plurality of candidate values.
Abstract:
A method and apparatus for converting an analog input signal to a digital output signal, provide for simultaneously comparing the input signal to a sequential multiplicity of reference values representing a range of values of the input signal, and asynchronously processing digital results from simultaneous comparison to produce a digital representation of level crossings of the input signal with respect to the multiplicity of reference values.
Abstract:
In accordance with an embodiment of the present invention, a comparator system includes a plurality of multiplexers adapted to multiplex a number of differential input signals and a number of differential reference signals. A differencing circuit receives a differential input signal and a differential reference signal from the multiplexers and provides a differential output signal, which is used to provide a differential comparator output signal. A latch may be provided to perform differential-to-single ended conversion on the differential comparator output signal to provide a latch output signal. An output circuit may provide a registered digital output signal based on the latch output signal.
Abstract:
ADC accuracy is increased by 1 bit by interpolation of comparator outputs in a comparator array, thereby increase accuracy without significant increasing power consumption and size.
Abstract:
An analog-to-digital converter has a digital-to-analog converter, first, second and third comparators, and a sequential comparison register and control logic circuit. The digital-to-analog converter produces analog signals, the first, second and third comparators compare the input analog signal with first, second and third analog signals which are different from each other. Further, the sequential comparison register and control logic circuit controls the digital signals that are fed to the digital-to-analog converter from the first to third comparators, and outputs the digital signals as digital values obtained by subjecting the input analog signals to the analog-to-digital conversion.
Abstract:
Quantizers of delta sigma modulators include comparators to quantize a quantizer input signal. Each comparator compares a respective reference signal to the quantizer input signal. A logic processing module determines a quantizer output signal based upon the comparison. During subsequent periods of time, a comparator offset converter alters “reference signal-to-comparator input terminal” associations to reroute respective reference signals from one arrangement of comparator input terminals of at least two (2) of the comparators to a different arrangement of comparator input terminals. The comparator offset converter can randomly alter the reference signal-to-comparator input terminal associations. The comparator offset converter can maintain a 1:1 reference signal-to-comparator input terminal relationship. By maintaining the 1:1 ratio of reference signal-to-comparator input terminal and randomizing the reference signal-to-comparator input terminal associations, the comparator offset converter effectively converts the comparator offset voltage nonlinearities into energies and frequencies that can be constructively processed and improve signal-to-noise ratios.