Abstract:
The invention provides methods and apparatus for multiple user detection (MUD) processing that have application, for example, in improving the capacity CDMA and other wireless base stations. One aspect of the invention provides a multiprocessor, multiuser detection system for detecting user transmitted symbols in CDMA short-code spectrum waveforms. A first processing element generates a matrix (hereinafter, nullgamma matrixnull) that represents a correlation between a short-code associated with one user and those associated with one or more other users. A set of second processing elements generates, e.g., from the gamma matrix, a matrix (hereinafter, nullR-matrixnull) that represents cross-correlations among user waveforms based on their amplitudes and time lags. A third procesing element produces estimates of the user transmitted symbols as a function of the R-matrix.
Abstract:
A novel and improved method and apparatus for searching is described. This searcher combines the ability to search multiple offsets of single pilots, such as those found in the IS-95 system, with the ability to search multiple pilots, such as those found in a GPS location determination system. Both types of searching can be done in a single architecture combining the parallel computation features of a matched filter with the flexibility of allowing a variable number of coherent accumulations and a variable number of non-coherent accumulations to be performed at high speed for a wide range of search hypotheses in a resource efficient manner. This invention allows for parallel use of the matched filter structure in a time-sliced manner to search multiple windows. In addition, the searcher allows for optional independent Walsh decovering for each search window. The time-sharing approach allows for optional frequency searching of any offset.
Abstract:
A CDMA signal processing circuit (300) includes a summer circuit (302) that receives a plurality of CDMA signals from a plurality of channels (304). The summer circuit (302) combines the plurality of CDMA signals according to a power magnitude value and power direction value associated with each CDMA signal. The summer circuit (302) generates a summed signal (306) that is applied to a clipping circuit (308). The clipping circuit (308) removes a portion of the summed signal (306) outside a desired threshold range and generates a clipped signal (310) therefrom. Digital to analog processing circuits (312 and 314) convert the clipped signal (310) into a half width encoded format. Digital to analog processing circuits (312 and 314) transform the half width encoded clipped signal into analog I and Q signals, respectively. The analog I and Q signals are applied to corresponding filters (316 and 318) prior to transmission.
Abstract:
A scalable method and system for generating a 3X long code sequence for use in a CDMA communication system uses Gold sequences. A preferred pair of 1X long code sequences both running at 1.2288 Mchips/s are used to generate the 3X sequence. The 3X sequence so generated is a pseudo-random sequence with well defined auto-correlation and cross-correlation properties. Because the method is scalable it is easily scaled to generate other long code e.g. 6X, 9X, and 12X sequences.
Abstract:
A configurable multimode despreader for spread spectrum applications is disclosed herein. The despreader includes a plurality of data lines, at least one selective coupler coupled to the plurality of data lines, at least one multiplier coupled to the selective coupler, and a code input line coupled to the multiplier. The selective coupler selectively couples one of the plurality of data lines with the multiplier per any one of a plurality of despreading protocols. The multiplier then multiplies a desired input data type received from the selective coupler with a despreading code chip received from the code input line to produce an observation. The programmable multimode despreader supports variable code and data modulation schemes and variable spreading factors.
Abstract:
A central terminal (10) in a wireless telecommunications system (1) includes an analog card (206) that combines inputs from a plurality of modem units (204) for a plurality of downlink communication paths. The analog card (206) generates a composite transmit signal (214) that is provided to a radio frequency card (208). The radio frequency card (208) prepares the composite transmit signal (214) for radio frequency transmission from the central terminal (10). A power amplifier (218) in a combining shelf (201) amplifies the composite transmit signal (214) to a desired transmitting level. A detector (240) measures a power output of the power amplifier (218). The power output measurement determined by the detector (240) is collected by a combiner monitor (222) and delivered to a shelf controller (210) of the modem shelf (200). The shelf controller (210) provides the power output measurement to the analog card (206). The analog card (206) compares the power output measurement to power estimates of the inputs from the modem units (204). The analog card (206) generates an adjustment signal (242) to control the power output from the power amplifier (218) by adjusting a gain of the radio frequency card in accordance with the comparison.
Abstract:
A wireless telecommunications system (1) includes a central terminal (10) for transmitting and receiving radio frequency signals to and from a subscriber terminal (20). A downlink communication path is established from a transmitter (200) of the central terminal (10) to a receiver (202) of the subscriber terminal (20). A downlink signal (212) is transmitted from the transmitter (200) to the receiver (202) during setup and operation of the wireless telecommunications system (1). The receiver (202) of the subscriber terminal (20) compares a code and phase of a master code sequence in the downlink signal (212) to a code and phase of a slave code sequence of the receiver (202). The receiver (202) adjusts the phase of the slave code sequence until a match is obtained with the master code sequence. Matching of the slave code sequence to the master code sequence facilitates establishment of the downlink communication path.
Abstract:
A subscriber station monitor system is provided for a subscriber station of a wireless telecommunications system. The subscriber station includes a transmitter/receiver for wireless communication with a central station and a communications controller for processing signals for transmission and/or received signals, a supply unit for connection to one or more telephone lines for user telecommunications equipment and a link connecting the communications controller to the supply unit, control data being passed in accordance with an internal protocol between the communications controller and the supply unit via the link. The station monitor system comprises a display and at least one user input device, a connector to the link and a protocol interpreter for extracting control data to be displayed on the display for monitoring the operation of the subscriber station and/or for inserting input control data to the link for configuring the subscriber station. By providing a separate monitor system for connection to the subscriber station in the link between the transmitter/receiver and the supply unit, monitoring and control of selected subscriber terminal functions is readily possible.
Abstract:
A CDMA signal processing circuit (300) includes a summer circuit (302) that receives a plurality of CDMA signals from a plurality of channels (304). The summer circuit (302) combines the plurality of CDMA signals according to a power magnitude value and power direction value associated with each CDMA signal. The summer circuit (302) generates a summed signal (306) that is applied to a clipping circuit (308). The clipping circuit (308) removes a portion of the summed signal (306) outside a desired threshold range and generates a clipped signal (310) therefrom. Digital to analog processing circuits (312 and 314) convert the clipped signal (310) into a half width encoded format. Digital to analog processing circuits (312 and 314) transform the half width encoded clipped signal into analog I and Q signals, respectively. The analog I and Q signals are applied to corresponding filters (316 and 318) prior to transmission.
Abstract:
In a method of interference mitigation in a multi user detection capable radio base station in a communication system, which radio base station comprises a set of confined detection modules, at least one of which is capable of handling multiple user connections, first and at least a second subset of detection modules are formed from said set, wherein the second set comprises at least one interference mitigation capable detection module. Interference information from the first subset is communicated to the second subset, interference originating in user connections of the first subset are then mitigated from the user connections of the second subset. Subsequently, interference is mutually mitigated between the connections within the interference mitigation capable detection module.