Abstract:
There is provided an α-carbonyl alkenyl ester and a preparation method therefor, and the α-carbonyl alkenyl ester is further used to react with a primary or secondary amine to prepare an amide. The two reactions are combined to develop an amide bond and peptide bond formation method that directly use carboxylic acids and amines as starting materials and allenones as a condensing reagent. The α-carbonyl alkenyl ester corresponding to an α-amino acid serves as a peptide synthesis building block and is used in solid phase peptide synthesis. The method is carried out under mild reaction conditions, simple to operate, and has a high yield. Compared with existing amide bond condensation reagents, the allenones have the advantages of being simple to prepare, having good stability, a low molecular weight, not racemizing when activating α-chiral carboxylic acids, and is a novel amide bond and peptide bond condensing reagent.
Abstract:
Therapeutics targeting the bacterium Porphyromonas gingivalis, including its proteases arginine gingipain A and arginine gingipain B, are disclosed, as well as the use thereof for the treatment of disorders associated with P. gingivalis infection, including brain disorders such as Alzheimer's disease. In certain embodiments, the invention provides compounds according to Formula I, Formula Ia, and Formula Ib, as described herein, and pharmaceutically acceptable salts thereof.
Abstract:
The present invention generally relates to novel synthetic methods, systems, kits, salts, and precursors useful in medical imaging. In some embodiments, the present invention provides compositions comprising an imaging agent precursor, which may be formed using the synthetic methods described herein. An imaging agent may be converted to an imaging agent using the methods described herein. In some cases, the imaging agent is enriched in 18F. In some cases, an imaging agent including salt forms (e.g., ascorbate salt) may be used to image an area of interest in a subject, including, but not limited to, the heart, cardiovascular system, cardiac vessels, brain, and other organs.
Abstract:
The invention describes membrane permeable creatine prodrugs, pharmaceutical compositions comprising membrane permeable creatine prodrugs, and methods of treating diseases such as ischemia, heart failure, neurodegenerative disorders and genetic disorders affecting the creatine kinase system comprising administering creatine prodrugs or pharmaceutical compositions thereof. The invention also describes treating a genetic disease affecting the creatine kinase system, such as, for example, a creatine transporter disorder or a creatine synthesis disorder comprising administering creatine prodrugs or pharmaceutical compositions thereof.
Abstract:
The disclosure features novel lipids and compositions involving the same. Nanoparticle compositions include a novel lipid as well as additional lipids such as phospholipids, structural lipids, and PEG lipids. Nanoparticle compositions further including therapeutic and/or prophylactics such as RNA are useful in the delivery of therapeutic and/or prophylactics to mammalian cells or organs to, for example, regulate polypeptide, protein, or gene expression.
Abstract:
The present invention relates to linear guanidine derivatives, methods of preparation, uses and pharmaceutical compositions thereof. The compounds of Formulas 1 or 2 exhibit high antimicrobial activity against Gram positive and Gram negative bacteria.
Abstract:
Disclosed are general and “substantially pure” branched discrete polyethylene glycol constructs useful in attaching to a variety of biologically active groups, for example, preferential locators, as well as biologics like enzymes, for use in diagnostics, e.g. imaging, therapeutics, theranostics, and moieties specific for other applications. In its simplest intermediate state, a branched discrete polyethylene glycol construct is terminated at one end by a chemically reactive moiety, “A”, a group that is reactive with a biologic material that creates “A”, which is a biologically reactive group, connected through to a branched core (BC) which has attached at least two dPEG-containing chains, indicated by the solid line, , having terminal groups, which can be charged, non-reactive or reactable moieties and containing between about 2 and 64 dPEG residues.
Abstract:
The present invention generally relates to novel synthetic methods, systems, kits, salts, and precursors useful in medical imaging. In some embodiments, the present invention provides compositions comprising an imaging agent precursor, which may be formed using the synthetic methods described herein. An imaging agent may be converted to an imaging agent using the methods described herein. In some cases, the imaging agent is enriched in 18F. In some cases, an imaging agent including salt forms (e.g., ascorbate salt) may be used to image an area of interest in a subject, including, but not limited to, the heart, cardiovascular system, cardiac vessels, brain, and other organs.
Abstract:
The invention relates to compounds of formula (I), and the use thereof as a drug, particularly for the treatment of tumors associated with hyperactivation of the hedgehog protein signaling pathway, treatment of neurodegenerative diseases, treatment of diseases related to cerebral development (holoprosencephaly), for stem cell monitoring treatment of cerebrovascular accidents and cardiovascular accidents, treatment of diseases involving oligodendrocytes and diseases involving neurolemmocytes, for application thereof in vitro for modulating human or animal stem cell renewal, and for the treatment of diabetes. The invention also relates to pharmaceutical compositions having a compound of formula (I). The invention also relates to a method for radio-marking compounds having formula (I), the marked compounds, and the use of the compounds as research tools, and method for screening and/or identifying ligands in the Smoothened receptor (Smo) binding sites, methods for identifying agonists and antagonists of the Smoothened receptor, and a method for identifying cells.