Abstract:
An apparatus for monitoring trash in a sample of trash particles and fibers includes scales for determining the weight of the sample which is transmitted to a computer. The sample is presented to a sensing volume and an optical sensor produces an output signal corresponding at least to the presence of the trash particle in the sensing volume. In one embodiment, the output signal is the waveform corresponding to light extinction caused by the presence of the particle in the sensing volume. In a second embodiment, image analysis of trash particles in a sensing volume provide output signals corresponding to the size, shape or composition of the particles. The computer receives the weight data and the output signal from the optical sensor and produces output data in the form of a count of at least a portion of the trash particles per unit weight of sample. The computer also outputs data in the form of or corresponding to the effective diameter, projected area and weight of the trash particles and count and weight of the fibers. In particular, the computer categorizes trash particles and outputs data for a particular category of particles.
Abstract:
A non-contact method and apparatus for measuring dimensional variables of a threaded exterior surface of a length of pipe utilizes at least one laser generated parallel scanning light beam transmitter and at least one receiver which is disposed on a frame which moves with respect to the longitudinal axis of the pipe, to measure the amount of the scanning beam width which is blocked by the threaded exterior surface at a plurality of sequential locations along the longitudinal axis of the pipe, and the measured amounts are stored as a function of the sequential locations to produce a profile of the threaded exterior surface and to determine from the profile a desired dimensional variable of the threaded exterior surface.
Abstract:
The diameter of an optical fiber (36) moving past a measurement apparatus (20) is evaluated in a time of less than about 50 microseconds, permitting closely spaced individual measurements along the length of the optical fiber (36). The measurement apparatus (20) includes a number of discrete, stationary light sensors (22) arranged in a linear array (24), a light source (28) positioned to shine a beam of light (34) into the sensors (22) of the array (24), and a lens (38) that directs an enlarged image of the optical fiber (36) onto the array (24) of light sensors (22). The light sensors (22) each produce an output signal (26) responsive to the intensity of light reaching the sensor (22). The number of light sensors (22) having a signal below a threshold value at a selected moment is counted as a measure of the diameter of the portion of optical fiber (36) then lying between the light source (28) and the array of optical sensors (22).
Abstract:
A device for measuring the positions and the diameters of the filaments in filament bundle comprising a laser scanner disposed adjacent the filament bundle wherein, in the optical path behind the filament bundle to be measured, are disposed an optical means such as a lens of mirror, as well as a filter preferably in the focal plane of said optical means for filtering out the light share not diffracted, as well as a detector and analysis means. The filter is permeable only for limited portions of the diffraction image, and the detector means measures the intensities at several locations of the diffraction image at the same time. In the analysis means the positions of the filaments are determined on the basis of the measured intensity curves while the diameters of the filaments are determined on the basis of the ratios of the measured intensities.
Abstract:
An apparatus for determining at least one size parameter of an object whether it is moving or at rest comprises an optoelectronic measuring system, which comprises an evaluating unit and transmitting and receiving means, which are disposed in a measuring plane that extends substantially at right angles to the longitudinal axis of the object. The measuring plane extends in a measuring portal, which comprises at least two measuring beams, which include a predetermined angle with each other. Each of said measuring beams has a side face which faces said measuring plane and on said side face is provided with at least one row of receiving elements. Associated with each of said rows of receiving elements is a transmitting element, which is disposed in the measuring plane at a fixed distance from the associated measuring beam and is adapted to be periodically activated to emit a fanlike light beam, which is incident on the receiving elements of the associated row thereof.
Abstract:
The diameters of successive rod-shaped articles of the tobacco processing industry are ascertained while the articles advance in the flutes of a conveyor, first along a rolling unit which turns successive articles at random through different angles and thereupon past a photoelectronic detector wherein a radiation source emits a narrow beam of radiation which impinges upon successive articles for intervals of time which are dependent upon the diameters of the articles. The transducer of the detector generates signals which are indicative of the monitored diameters, and such signals are transmitted to an evaluating circuit which controls an ejector for unsatisfactory articles and/or displays the monitored diameters on a screen. The articles are partially lifted off the conveyor by cushions of compressed air during transport past the rolling unit.
Abstract:
An optical system for irradiation comprising a light source, a lens, an optical fiber, a rectangular waveguide, an objective lens and a prism and an optical system for receiving light comprising an objective lens, an aperture and an optical fiber are arranged with their optical axes intersecting one another at a point P in a measuring volume. In the optical system for irradiation, the light emitted from the optical fiber and having an intensity distribution expressed by a normal distribution curve is changed to a light having a uniform intensity distribution and a rectangular cross section, which is irradiated through the prism to the point p in the measuring volume. A light scattered at an angle of 90.degree. by a particle flowing through the measuring volume is guided through the optical system for receiving light to a photodetector which converts the scattered light to an electric signal (current) called a scattered light pulse. An arithmetic unit calculates the particle size from the height of this scatterd light pulse and the flow speed from the pulse width.
Abstract:
An apparatus and method for measuring a cross-sectional dimension or deviation from a predetermined shape of an elongated moving object. The apparatus is rotated about the object and includes a light source and photo-diode array. By continuous rotation of the apparatus about the object, deviations in the cross-sectional dimension are determined.
Abstract:
For measuring and/or monitoring properties of yarns or ropes with the aid of an image sensor a two-dimensional image of a portion of the yarn or rope is acquired and converted to electrical image signals. The image signals are digitized in image point manner and stored in an image signal memory at memory locations assigned to the image points. By a calculating unit the values of the properties to be detected are determined from the stored digital image signals. The properties which can be measured and/or monitored in this manner are in particular the diameter of the yarn or rope, the statistical values of projecting fibres, filaments or wires and the twist of the yarn or rope.
Abstract:
A sample of material is rotated within a pair of parallel, spaced-apart laser beams. Variations in the diameter of the sample are determined with azimuth from the amounts of the laser beams intercepted by the sample as it rotates about an axis perpendicular to the plane of the laser beams. The sample is translated along this axis within the path of the laser beams so that the diameter of the sample is determined for a plurality of spaced-apart planes through the sample perpendicular to the axis of rotation. The deformation of the material with stress is determined by measuring the variations in diameter of the sample as the stress on the sample is changed.