摘要:
The present invention discloses aqueous methods for enhancing the acid sites of fluid catalytic cracking (FCC) catalysts. The methods comprise the steps of contacting an FCC catalyst, either spent or fresh, with an aqueous solution comprising water, an inorganic acid substantially free of chloride and aluminum. The acid is preferably sulfurous or sulfuric acid. The aluminum is provided by an aluminum source selected from the group consisting of the alumina trihydrates and aluminum oxide. Chloride contamination of the aluminum source should be minimal, preferably less than about 1000 ppm chloride, more preferably less than about 200 ppm chloride. The pH of the aqueous solution is adjusted to about 3-12 by the addition of a sufficient quantity of ammonium hydroxide. The FCC catalyst is added to this solution, preferably with stirring, in a weight ratio of about 1 part catalyst to about 1-10 parts water to prepare an aqueous slurry. Upon stabilization of the pH of the aqueous slurry, enhancement of the acid sites of the catalyst is achieved and the catalyst may be separated from the slurry and, if desired, washed. This simple, aqueous process reduces the level of many metal poisons on the FCC catalyst and produces a catalyst having an enhanced number of acid reaction sites.
摘要:
A process and apparatus for rejuvenating particulate used catalysts in a single rejuvenation vessel and providing a rejuvenated catalyst material having properties that result in activity substantially equal to new catalyst. The pressurizable vertically-oriented vessel has inlet and outlet openings for the catalyst and washing liquids, and is arranged to facilitate successive solvent liquid washing, water washings, and acid treatment steps for the used particulate catalyst provided in a bed in the vessel conical-shaped lower portion which contains catalyst rotary stirring means. After rejuvenation of the used catalyst, it is withdrawn from the vessel conical-shaped lower portion downwardly through a central withdrawal conduit and control valve for further processing. The water-soluble solvent and acid treatment liquids can be usually recovered by distillation for reuse in the catalyst rejuvenation process. The solvent-washed and acid-treated catalyst is separately heated and oxidized to remove carbon deposits and provide a completely rejuvenated catalyst material.
摘要:
This invention relates to a process for improving the effectiveness of a refinery process catalyst. The process comprises treating the refinery process catalyst with an effective amount of reducing agent selected from the group consisting of hydrazine, oximes, hydroxylamines, carbohydrazide, erythorbic acid, and mixtures thereof.
摘要:
A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.
摘要:
A process for dissolving used catalyst includes the steps of roasting, after subjecting to an optional deoiling treatment, the used catalyst at a temperature lower than 1,000.degree. C. but not lower than the temperature at which any of the residual components in the used catalyst undergoes ignition and combustion where the residual components are selected from the group consisting of oils, sulfur components, and carbon components; and dissolving the roasted product using sulfuric acid after adding a metal to the roasted product as a catalyst for accelerating dissolution. The process provides a simple and efficient method for completely dissolving a used catalyst having a carrier containing alumina as the principal component.
摘要:
Discussed is a process for recovering metals and metal-containing products, such as a nickel sulfate product, from aqueous feed solutions comprising two or more dissolved metals. A selected metal is isolated and in a purified form in an aqueous raffinate phase from solvent extraction of nonselected metals using an organic phase containing a salt of an organic acid and the selected metal. Aqueous feed solution may result from leaching operations, including leaching of nickel-containing catalyst, such as catalyst used in hydrogenation of vegetable oils.
摘要:
A process for converting catalytic cracking catalyst fines to a shaped composition comprises acid-treatment of catalytic cracking catalyst fines, followed by separation and drying of the acid-treated fines; preparing a shapable mixture by mixing the dried catalyst fines with calcium aluminate, sodium silicate, phosphoric acid and water; shaping (preferably extruding) the obtained shapable mixture; and drying and thereafter calcining the obtained shaped particles. A shaped composition having high crash strength is obtained by this process.
摘要:
A three step process for regenerating spent bleaching clays and acid-activated smectite catalyst granules includes: (1) an extraction step to remove a majority of entrained oil, preferably about 75% to about 95% by weight of the entrained oil, when regenerating bleaching clays; (2) an oxidation step to remove the majority of remaining carbonaceous adsorbates which are not removed by the preceding extraction step, and (3) an acid wash step to restore the acidity normally associated with fresh acid-activated bleaching clays. The features of steps 2 and 3 may be combined into a single step by using an appropriate oxidant, for example, a source of acidic protons, such as peracetic acid.
摘要:
There is disclosed a process for regenerating a deactivated catalyst containing a zeolite and a noble metal of group VIII of the Periodic Table supported thereon which comprises subjecting the deactivated catalyst to decoking treatment under reductive or oxidative condition and subsequently to contact treatment with a solution containing a halogen or a halogen-containing compound and thereafter calcining the deactivated catalyst. According to the above process, the catalytic activity of a deactivated catalyst is restored to the level comparable to that of a fresh catalyst by the use of an inexpensive regenerating agent and simplified steps. Thus, the regeneration process is expected to find effective use in petroleum refinery, petrochemical industry, etc.
摘要:
Regeneration of an ammoxidation catalyst which is exhausted as a result of prolonged exposure to ammoxidation conditions, containing oxides of Mo, Bi, P, Fe, Co, Ni and possibly an alkali metal, particularly K, on a granular support, particularly silica, by means of a method including:the impregnation of the granules of spent catalyst with an aqueous molybdic acid solution, or with an aqueous solution of partially or totally salified molybdic acid in the form of the ammonium salt, with a volume of impregnation solution less than the total pore volume of the catalyst subjected to regeneration;the drying of the impregnated granules at a temperature of from 100.degree. to 200.degree. C.;the calcining of the dried granules at a temperature of from 250.degree. to 450.degree. C., solely when the impregnation is with an aqueous solution of partially or totally salified molybdic acid.Under ammoxidation conditions, the catalyst regenerated in this manner displays characteristics of activity, selectivity and of mechanical strength similar to those of the fresh catalyst.