Abstract:
The rotary machine includes a rotor rotatably provided and a resin-molded stator. The stator includes a stator core, a coil, and a mold portion. A tooth portion in the stator core includes first and second facing portions. The first facing portion includes a first facing surface where an air gap with the rotor becomes a first distance. The second facing portion is integrated with the first facing portion in the circumferential direction centered at the rotation axis of the rotor, and includes a second facing surface where the air gap becomes a second distance wider than the first distance. The second facing portion includes a groove portion on the second facing surface. The mold portion includes a first mold portion. The first mold portion covers the second facing portion, is provided at the groove portion, and includes a third facing surface where the air gap becomes the first distance.
Abstract:
An electrically rotating machine, includes a rotor and a stator, the rotor and/or the stator including a laminated core, with an air gap being formed between the rotor and the stator, said rotor having axially and radially extending cooling paths in flow communication with each other and in flow communication with radially extending cooling paths of the stator via the air gap, wherein the radially extending cooling paths of the stator are respectively axially aligned with the radially extending cooling paths of the rotor; at least one fan for conducting an air flow through the axially and radially extending cooling paths of the rotor, the air gap and the cooling paths of the stator, wherein the air gap has at least one constriction defined by sheets of the laminated core of the rotor having an outer radius greater than remaining ones of the sheets of the laminated core of the rotor and/or by sheets of the laminated core of the stator having a smaller inner radius than remaining ones of the sheets of the laminated core of the stator.
Abstract:
A method is provided for testing the tightness of an electric machine stator core includes: introducing a test instrument that is connected to a movable support into an air gap between a stator core and a rotor, locally placing the test instrument and locally testing defined zones of the generator stator core. A device for carrying out the method is also provided.
Abstract:
An electromechanical limited rotation rotary actuator comprises a stator having an aperture extending axially therein and at least two teeth having arcuate end portions forming an aperture. A rotor includes a diametral magnetized magnet bidirectionally operable with the stator and extending into the aperture. A non-uniform gap is formed between the magnet and the end portions of the teeth, and wherein the shape of the gap provides a restoration torque resulting in a spring-like return-to-center action of the rotor. An electrical coil extends around at least a portion of one tooth and is excitable for magnetizing the tooth and providing bidirectional torque to the rotor.
Abstract:
In a rotating machine, a base is configured such that a housing space is formed by joining a cover to the base and has a bearing hole communicating ambient air and the housing space. A sleeve is fitted into the bearing hole and formed with a porous material. The circumferential lower end portion of the sleeve is exposed to ambient air from the bearing hole. At least part of the pores on the surface of the circumferential lower end portion in contact with ambient air are filled in.
Abstract:
A motor includes a driving shaft, a rotor attached to the driving shaft, and a stator having a substantially cylindrical stator core provided around the rotor, and a plurality of coils wound around the stator core in a distributed winding manner. The stator core includes three separated stator core parts aligned along a peripheral direction, and each of the coils is disposed so as not to lie astride any two of the three separated stator core parts. At least one coil end of the plurality of the coils is disposed to pass through an inner side relative to an inner peripheral surface of the stator core.
Abstract:
An axial gap type rotating electric machine, having a stator with first tooth parts protruding in an axial direction and formed in a concentric arc-like manner, and a rotor with magnetic poles arranged in a distributed manner in the circumferential direction, and the magnetic poles include second tooth parts that protrude in the axial direction and are formed in a concentric arc-like manner, the second tooth parts being opposedly arranged so as to respectively engage with the first tooth parts with the intermediation of the air gap. The rotor is incorporated in the rotating member so as to be movable in the axial direction and so as not to be rotatable with respect to the rotating member. The rotating electric machine further includes an urging device that makes the air gap between the rotor and the stator adjustable.
Abstract:
A rotary electric machine includes a rotor, a stator having coils wound to surround the rotor, a cylindrical ring member fixedly mounted on the stator by shrinkage fitting, and a frame disposed on the outside of the ring member with a gap created in between. The distance of the gap varies as a result of thermal expansion of the stator and the ring member. An outer surface of the ring member goes into contact with the frame when the stator and the ring member thermally expand, whereby the stator and the ring member are efficiently cooled.
Abstract:
A generator for a wind turbine is provided. The generator includes a housing with a multi-piece stator arrangement mounted to the housing, the stator arrangement surrounding radially inward and radially outwardly directed faces of a rotor assembly, also surrounded by the housing. The rotor assembly is configured for direct attachment to a wind turbine main shaft so that rotation of the main shaft results in like rotation of the rotor assembly. The housing is mechanically coupled to the rotor by anti-friction elements such that the rotor is free to rotate about its central axis relative to the housing, and such that radial displacement of the rotor due to main shaft deflections results in a like radial displacement of the housing.
Abstract:
An electrical machine, in particular an electric motor of a motor vehicle, having a stator and having a rotor which has a rotation axis. An electrical machine can be a brushless electric motor (DC motor) or a synchronous machine, but also a generator. The stator or the rotor has an electromagnet structure, and the other has a permanent-magnet structure which comprises a first quantity of permanent magnets and a second quantity of permanent magnets. At at least the operating temperature (T), the magnetic coercive field strength (Hcji) of the first quantity is greater than the magnetic coercive field strength (Hcj2) of the second quantity. Further, two methods for producing hybrid magnets are provided.