Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.
Abstract:
A plug adapter with wireless transceiver module with universal plug & socket assembly is combined with a wireless transceiver module. Firstly, a wireless transceiver module is set into the portable plug adapter without worry about the difference of plugs; furthermore, it is possible to share wireless connection via either of 3G, 4G, WIMAX and WIFI. And, an input interface and at least one connection port are set externally and connected electrically to provide wired network input and output; if wireless signals are output via the wireless transceiver module, many users could share network resources. Additionally, a USB connector is connected with an electronic device for electric charging, thus realizing ease of use via the integrated design of the present invention.
Abstract:
A stacked connector component includes a housing, connectors at a front opening of the housing and arranged in a stacked formation within one or more columns, and a for and exposed at the connectors. The pins include high-speed pins routed within the housing to a bottom side thereof and low-speed pins routed within the housing to a back side or a top side thereof. A circuit board includes pin pads connectable to the pins and disposed on a substrate. The pin pads include high-speed signal pin pads for the high-speed signal pins. The substrate includes contiguous high-speed areas in which the high-speed signal pin pads for the high-speed pins are located, between which no pin pads are located.
Abstract:
A connector mechanism includes a casing, a socket, a rotary cover and a resilient plate. An opening is formed on the casing. The resilient plate is connected to an inner side of the casing and the rotary cover for driving the rotary cover to rotate relative to the casing. The resilient plate includes a fixing portion fixed on the inner side of the casing, a driving portion resiliently connected to the fixing portion and the rotary cover for driving the rotary cover to rotate relative to the casing by deflection relative to the fixing portion, and a stopping portion disposed on the driving portion for stopping a tongue of a plug as the plug passes through the opening to connect with the socket, so as to fasten the plug.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
An angle panel having openings cut through a flat base thereof for holding network jacks individually, and a backwardly extending retaining structure located on one side of each opening for securing one respective network jack for receiving a respective mating network plug to keep the plug hole of the installed network jack in an oblique position relative to the flat base. When attaching a network jack to the angle panel, opposing upper hook and lower hook of the attached network jack are respectively hooked on the retaining structure at the corresponding opening and the flat base of the angle panel.
Abstract:
An angle panel having openings cut through a flat base thereof for holding network jacks individually, and a backwardly extending retaining structure located on one side of each opening for securing one respective network jack for receiving a respective mating network plug to keep the plug hole of the installed network jack in an oblique position relative to the flat base. When attaching a network jack to the angle panel, opposing upper hook and lower hook of the attached network jack are respectively hooked on the retaining structure at the corresponding opening and the flat base of the angle panel.
Abstract:
An apparatus comprises a connector, wherein the connector comprises i) a jack, wherein the jack comprises a) a plurality of electrical terminals, and b) a magnetic component electrically coupled to the plurality of electrical terminals; and ii) a physical layer device, wherein the physical layer device comprises a) a physical layer module, wherein the physical layer module comprises an interface configured to receive packets from the jack, and an interface bus configured to inspect the packets, and b) a network interface configured to, based on the inspection of the packets by the interface bus, provide the packets to a device separate from the physical layer device.
Abstract:
A patch cord for an intelligent patching system is provided. The patch cord is a ten-wire patch cord having a patch panel plug and a switch plug. The patch panel plug contains ninth and tenth wire contacts that interface with ninth and tenth wire contacts of an intelligent patch panel port. The switch plug is provided with a plunger-style switch that enables the intelligent patch panel to determine when the switch plug is plugged into a switch port. The switch plug is also provided with LED's and circuitry that controls the LED's.
Abstract:
A patch cord for an intelligent patching system is provided. The patch cord is a ten-wire patch cord having a patch panel plug and a switch plug. The patch panel plug contains ninth and tenth wire contacts that interface with ninth and tenth wire contacts of an intelligent patch panel port. The switch plug is provided with a plunger-style switch that enables the intelligent patch panel to determine when the switch plug is plugged into a switch port. The switch plug is also provided with LED's and circuitry that controls the LED's.