Abstract:
A substrate cutting apparatus including: a stage to support a substrate; a laser generator to emit a laser beam; a beam oscillator to oscillate the laser beam onto a cutting line of the substrate, to heat the substrate; and a cooling unit to cool the heated substrate.
Abstract:
A substrate cutting apparatus includes a stage configured to support a substrate to be cut along a virtual cutting line, a laser generator configured to emit an ultraviolet (UV)-based laser beam for cutting the substrate by removing part of the substrate along the cutting line, and a beam oscillator disposed on a beam path of the laser beam and configured to perform a beam swing on the laser beam in a direction parallel to the length direction of the cutting line by oscillating a tilt angle of the laser beam toward the cutting line.
Abstract:
A method and apparatus for allocating channel bandwidths in a wireless IPTV system is provided. The method includes measuring, if an additional service offering request is received in a saturation channel state, remaining execution times until a service of each terminal that is currently receiving a service is terminated, and setting a minimum of the measured remaining execution times to a unit time; calculating a securable channel bandwidth per the unit time with respect to each terminal that is currently receiving a service; and allocating, if the summation of the securable channel bandwidths per the unit time is equal to or greater than a channel bandwidth required to provide the additional service, the requested channel bandwidth in order to provide the additional service.
Abstract:
A hydrocarbon reforming catalyst includes an oxide support as well as a nickel active catalyst layer, a metal oxide, an alkali metal supported by the oxide support.
Abstract:
A fuel reformer burner in which fuel gas and anode-off-gas (AOG) may be burned and backfire may be prevented during combustion of AOG includes a fuel supply portion, an anode-off-gas (AOG) supply portion; and a combustion air supply portion. The fuel supply portion and the AOG supply portion are arranged inside the combustion air supply portion, which is formed to extend beyond the discharge sides of the fuel supply portion and the AOG supply portion.
Abstract:
A non-pyrophoric shift reaction catalyst includes an oxide carrier impregnated with platinum (Pt) and cerium (Ce). The non-pyrophoric shift reaction catalyst may be prepared by uniformly mixing a platinum precursor, a cerium precursor, and an oxide carrier in a dispersing medium to obtain a mixture; drying the mixture; and calcining the dried mixture. The shift reaction catalyst having a non-pyrophoric property has an excellent reaction activity even at a low temperature and can efficiently remove carbon monoxide in fuel.
Abstract:
Disclosed is a method of controlling a fuel cell system including a fuel processor to generate reforming gas and a stack to generate energy by receiving the reforming gas from the fuel processor. The method includes performing an initial operation, in which the fuel processor is operated to generate thermal energy heating, a heat medium is heated by the thermal energy generated from the fuel processor, and raising a temperature of the stack to a normal operation temperature by the heat medium having a high temperature, and performing a normal operation, in which the reforming gas is supplied to the stack after the temperature of the stack has reached the normal operation temperature. The stack temperature is raised until the stack is normally operated by heating the stack through the circulation of a heat medium heated by heat generated from a fuel processor.
Abstract:
A fuel processor that extracts, from a fuel source, hydrogen gas used for an electricity generation reaction. The fuel processor includes a reformer that generates hydrogen gas by reacting a fuel source with water, a burner that heats the reformer to an appropriate temperature for a hydrogen generation reaction, a CO remover that removes CO generated during the hydrogen generation reaction in the reformer, and a heat exchanger for cooling the CO remover.
Abstract:
Provided is a method of starting a polymer electrolyte membrane fuel cell (PEMFC) stack by rapidly increasing the temperature of the PEMFC stack. The PEMFC stack includes: a first flow line that is connected to upper parts of cooling plates installed in a plurality of unit cells of the PEMFC stack; a second flow line that is connected to lower parts of the cooling plates; a coolant reservoir installed between the first flow line and the second flow line; a heat exchanger installed between the first flow line and the coolant reservoir; a by-pass line that connects a point between the coolant reservoir and the second flow line, to the first flow line; a heating element that heats coolant in the by-pass line; a first valve installed between the first flow line and the heat exchanger; and a second valve that selectively connects the coolant reservoir, the second flow line, and the by-pass line. The method of starting a PEMFC stack includes: closing the first valve and controlling the second valve so that the second flow line and the by-pass line are connected to each other, and the coolant in the coolant reservoir is not connected to the second flow line and the by-pass line; and increasing the temperature of the PEMFC stack by heating the coolant in the by-pass line, using the heating element.
Abstract:
A fuel reformer burner for a polymer electrolyte membrane fuel cell (PEMFC) system includes a first tube through which a fuel for a fuel reformer is supplied and a second tube through which anode-off gas (AOG) is supplied from a fuel cell stack. The second tube is not connected to the first tube, and an inlet line through which an air is supplied is connected to the first tube.