Abstract:
Disclosed are a technology capable of improving printing properties and a structure of a touch window manufactured by the same. The touch window according to the present invention comprises: a sensing electrode pattern layer formed on a transparent window and including sensing electrodes which are patterned; and wiring parts connected to the sensing electrodes, wherein the touch window further comprises dummy circuit patterns spaced apart from the wiring parts.
Abstract:
An image quality control system and method is disclosed. At least one infrared camera takes a screen image of a room. When there are a plurality of cameras, images of the cameras are synchronized with respect to time, and a specific object of the image is tracked to estimate image quality of the object. When there are a plurality of cameras, a 3D screen model is reconfigured, and positions of the cameras and the infrared lighting tools are controlled. Infrared lighting and the cameras are controlled, and particularly, optical axis direction, optical magnification, exposure time, and the iris of the camera can be amended. Next, a high-quality object image list can be generated so as to process the images.
Abstract:
Disclosed is a system for protecting a BMS from electromagnetic waves, and more particularly, to a system for protecting a BMS from electromagnetic waves to prevent voltage sensing errors due to the electromagnetic waves generated by current from a battery cell. The system includes: a battery having a plurality of battery cells; a power relay assembly intermittently charging and discharging the battery; a battery management system (BMS) connected to the battery cell via a voltage sensing wire to predict a battery's SOC; and a housing surrounding the battery and the power relay assembly with one side of the outside of the housing having a separate section for therein for receiving the BMS so as to partition the BMS and the battery in different spaces.
Abstract:
Example embodiments provide tape structures including a base layer, a neutralizing layer and an adhesive layer. The base layer may support an object. The neutralizing layer may be arranged on the base layer. The neutralizing layer may be grounded to neutralize charges between the base layer and the object. The adhesive layer may be arranged on the neutralizing layer. The object may be attached to the adhesive layer. Example embodiments also provide methods of manufacturing the tape structures, methods of separating a wafer, and apparatuses for separating a wafer.
Abstract:
Example embodiments provide tape structures including a base layer, a neutralizing layer and an adhesive layer. The base layer may support an object. The neutralizing layer may be arranged on the base layer. The neutralizing layer may be grounded to neutralize charges between the base layer and the object. The adhesive layer may be arranged on the neutralizing layer. The object may be attached to the adhesive layer. Example embodiments also provide methods of manufacturing the tape structures, methods of separating a wafer, and apparatuses for separating a wafer.
Abstract:
A semi-automatic swing device for a swing-type mobile terminal including a body, and a swing housing slidably mounted to an upper surface of the body, in which the swing housing slides in parallel on the upper surface the body. The semi-automatic swing device includes a base plate, a swing plate slidably and rotatably mounted to the base plate while being opposite to the base plate, and a semi-automatic power drive interposed between the base plate. The semi-automatic power drive applies a moment force to be rotated in a counterclockwise direction to the swing plate if the semi-automatic power drive pivots up to a desired angle, and applies a moment force to be rotated in a clockwise direction to the swing plate if the semi-automatic power drive pivots above a desired angle.
Abstract:
Disclosed is a method of inputting and processing a variety of user information for a digital mobile station including a touch screen panel and a control module for processing touch screen panel data generated from the touch screen panel comprising the steps of: (a) continuously counting a predetermined time period interval in response to a written memo input mode; (b) detecting touch screen panel data generated from the touch screen panel corresponding to the continuous counting of the predetermined time period, producing and storing an associated written memo corresponding to the detected touch screen panel data; and, (c) determining whether there is detection of another touch screen panel data generated according to the continuous counting operation for the predetermined time period after the lapse of a certain period of time if there is no detection of the touch screen panel data for the predetermined period of time, storing detected another touch screen panel data if it is determined that there is detection of another touch screen panel data, and then repeating step (a).
Abstract:
A system for rapid thermal processing of a substrate in a process chamber while measuring and controlling the temperature at the substrate to establish substantially uniform substrate temperature in real time. The system includes an essentially continuous spirally-configured multizone illuminator having a plurality of substantially concentric rings of heating lamps for directing optical power toward the substrate and a fluid cooled optical reflector facing the substrate frontside and having a relatively high optical reflectivity. The illuminator can also be offset from the geometric center of the substrate. The system can also include a plurality of contact devices to provide thermal conductivity from each, or some subset, of the plurality of heating lamps. The illumination system of the present invention provides improved spatial resolution and improved thermal properties at the heating lamps.
Abstract:
A method and apparatus for multi-zone injection apparatus of multiple process gases onto a work piece during manufacture. The multi-zone injection apparatus uses a gas injection plate with multiple injection zones to deliver the multiple process gases into the chamber for deposition onto the work piece (for example, a silicon wafer). The gas showerhead separates the multiple process in a manner that avoids premixing the process gases, thereby minimizing gas-phase nucleation and particulate generation. The showerhead also allows real-time independent control over the gas flow rates in N channels to achieve deposition uniformity. Different gases can be configured in adjacent channels to provide M zones of multi-gas radial control.
Abstract:
A system for rapid thermal processing of a substrate in a process chamber while measuring and controlling the temperature at the substrate to establish substantially uniform substrate temperature in real time. The system includes an axisymmetrical multi-zone illuminator having a plurality of substantially concentric rings of heating lamps to direct optical power toward said substrate, a fluid cooled optical reflector facing the substrate frontside and having a relatively high optical reflectivity. The system also includes a multizone temperature measurement system having a plurality of pyrometry sensors coupled to said multi-zone illuminator, a system for real-time measurement and compensation of substrate emissivity and illuminator lamp light interference effects, and a multi-variable temperature controller for providing multi-zone real-time temperature control. The system also incorpotates a plurality of illuminator lamp power supplies.