摘要:
This disclosure relates generally to computerized systems and methods of producing a physical representation of an in silico Integrated Circuit (IC) having an in silico Multi-Mode Redundant (MMR) pipeline circuit. An IC layout of the in silico IC is initially generated with the electronic design automation (EDA) program. Multi-Mode Redundant Self-Correcting Sequential State Element (MMRSCSSE) layouts are then rendered immotile while initial redundant Combinational Logic Circuit (CLC) layouts are removed from the IC layout after the MMRSCSSE layouts have been rendered immotile. By first placing the MMRSCSSE layouts and then rendering them immotile, the remaining logic can be placed again and optimized without compromising critical node spacing. As such, the described method provides for a more efficient way to create the IC layout of the in silico IC while maintaining critical node spacing.
摘要:
The disclosure relates generally to triple-redundant sequential state (TRSS) machines formed as integrated circuits on a semiconductor substrate, such as CMOS, and computerized methods and systems of designing the triple-redundant sequential state machines. Of particular focus in this disclosure are sequential state elements (SSEs) used to sample and hold bit states. The sampling and holding of bits states are synchronized by a clock signal thereby allowing for pipelining in the TRSS machines. In particular, the clock signal may oscillate between a first clock state and a second clock state to synchronize the operation of the SSE according to the timing provided by the clock states.The SSEs have a self-correcting mechanism to protect against radiation induced soft errors. The SSE may be provided in a pipeline circuit of a TRSS machine to receive and store a bit state of bit signal generated by combinational circuits within the pipeline circuit.
摘要:
Porting a first integrated circuit design targeted for implementation in a first semiconductor manufacturing process, and implementing a second circuit design in a second semiconductor manufacturing process wherein the electrical performance of the second integrated circuit meets or exceeds the requirements of the first integrated circuit design even if the threshold voltage targets of the second integrated circuit design are different from those of the first integrated circuit design; and wherein physical layouts, and in particular the gate-widths and gate-lengths of the transistors, of the first and second integrated circuit designs are the same or substantially the same. The second integrated circuit design, when fabricated in the second semiconductor manufacturing process and then operated, experiences less off-state transistor leakage current than does the first integrated circuit design, when fabricated in the first semiconductor manufacturing process, and then operated. Porting includes determining processing targets for the second semiconductor manufacturing process.
摘要:
Circuits are disclosed that may include a plurality of transistors having controllable current paths coupled between at least a first and second node, the transistors configured to generate an analog electrical output signal in response to an analog input value; wherein at least one of the transistors has a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region.
摘要:
Embodiments and examples of differential threshold voltage non-volatile memories and related methods are described herein. In one example, a method for providing an integrated circuit can comprise providing a memory cell coupled to a first bitline and to a second bitline, and at least one of (a) providing a read assist mechanism configured to couple to the memory cell via the first and second bitlines, or (b) providing a memory reset mechanism configured to couple to the memory cell via the first and second bitlines. Providing the memory cell can comprise providing a first transistor comprising a first threshold voltage, providing a second transistor comprising a second threshold voltage, and cross-coupling the first and second transistors of the memory cell together. A difference between the first and second threshold voltages can correspond to a logic state of the memory cell. Other embodiments, examples, and related methods are also disclosed herein.
摘要:
Systems and methods for performing parallel test operations on Static Random Access Memory (SRAM) cells are disclosed. In general, each parallel test operation is a test operation performed on a block of the SRAM cells in parallel, or simultaneously. In one embodiment, the SRAM cells are arranged into multiple rows and multiple columns where the columns are further arranged into one or more column groups. The block of the SRAM cells for each parallel test operation includes SRAM cells in two or more of the rows, SRAM cells in two or more columns in the same column group, or both SRAM cells in two or more rows and SRAM cells in two or more columns in the same column group.
摘要:
A processing engine fetches one or more lines of software instructions into an instruction cache. Based on the contents of the cache, potentially needed functional units are identified as functional units that are operable to execute at least one software instruction stored within the instruction cache. Unneeded functional units are identified as functional units that are not operable to execute a software instruction stored within the instruction cache. A power increase is initiated for selected ones of the potentially needed functional units that are determined to be in a low power state. A power decrease is initiated for selected ones of the unneeded functional units that are determined to be in an operable power state.
摘要:
Embodiments and examples of differential threshold voltage non-volatile memories and related methods are described herein. Other embodiments, examples thereof, and related methods are also disclosed herein.
摘要:
An imaging system includes a photocell circuit. The photocell circuit includes a photodetector circuit. The photodetector circuit includes an input configured to receive incident light. A first terminal communicates with a sample node. A second terminal communicates with a monitor node. A sampling circuit is configured to drive the sample node to a first reset value at a first time in response to a first reset signal. The sampling circuit allows the first reset value to decay at a second time subsequent to the first time. A monitor circuit is configured to drive the monitor node to a second reset value at the first time in response to a second reset signal. The monitor circuit allows the second reset value to decay at the second time. The monitor circuit detects a third time when the monitor node decays to a predetermined stop value subsequent to the second time.