Abstract:
A parallel amplifier and an offset capacitance voltage control loop are disclosed. The parallel amplifier has a parallel amplifier output, which is coupled to an envelope tracking power supply output via an offset capacitive element. The offset capacitive element has an offset capacitive voltage. The offset capacitance voltage control loop regulates the offset capacitive voltage, which is adjustable on a communications slot-to-communications slot basis.
Abstract:
RF front end circuitry includes primary transceiver circuitry associated with a primary antenna and secondary receiver circuitry associated with a secondary antenna. Generally, the primary transceiver circuitry and the primary antenna are located on one end of a mobile communications device, while the secondary receiver circuitry and the secondary antenna are located at an opposite end of the device. Cross-coupling connection lines run between the antenna switching circuitry for the primary antenna and the secondary antenna, and are reused to send a portion of primary RF transmit signals from the primary transceiver circuitry to the secondary receiver circuitry so that primary RF transmit signals coupled into the secondary receiver path via antenna-to-antenna coupling can be reduced.
Abstract:
The present disclosure relates to a substrate with an embedded sintered heat spreader and a process for making the same. According to an exemplary process, at least one cavity is created through the substrate. Sinterable paste including metal particulates and binder material is then dispensed into the at least one cavity. Next, the sinterable paste is sintered to create a sintered heat spreader, which is characterized by high thermal conductivity. The sintered heat spreader adheres to the inside walls of the at least one cavity, enhancing the overall thermal conductivity of the substrate.
Abstract:
Radio frequency (RF) front end circuitry includes RF filtering circuitry with first multiplexer circuitry and second multiplexer circuitry. The first multiplexer circuitry is used to pass primary RF transmit and receive signals within one or more frequency division duplexing (FDD) operating bands and diversity multiple-input-multiple-output (MIMO) receive signals within one or more time division duplexing (TDD) operating bands between transceiver circuitry and one or more antennas. The second multiplexer circuitry is used to pass primary RF transmit and receive signals within the one or more TDD operating bands and diversity MIMO receive signals within the one or more FDD operating bands between the transceiver circuitry and the one or more antennas.
Abstract:
Power supply circuitry, which includes a parallel amplifier and a parallel amplifier power supply, is disclosed. The power supply circuitry operates in either an average power tracking mode or an envelope tracking mode. The parallel amplifier power supply provides a parallel amplifier power supply signal. The parallel amplifier regulates an envelope power supply voltage based on an envelope power supply control signal using the parallel amplifier power supply signal, which provides power for amplification. During the envelope tracking mode, the envelope power supply voltage at least partially tracks an envelope of an RF transmit signal and the parallel amplifier power supply signal at least partially tracks the envelope power supply control signal. During the average power tracking mode, the envelope power supply voltage does not track the envelope of the RF transmit signal.
Abstract:
The present disclosure relates to radio frequency (RF) microelectromechanical system (MEMS) device packaging, and specifically to reducing harmonic distortion caused by such packaging. In one embodiment, a die is provided that employs a gold-doped silicon substrate, wherein at least one RF MEMS device is disposed on the gold-doped silicon substrate. By employing the gold-doped silicon substrate, the packaging can achieve an exceptionally high resistivity without any additional expensive components, wherein the high resistivity has an associated low carrier lifetime. Notably, the low carrier lifetime corresponds to reduced harmonic distortion generated by the gold-doped silicon substrate, even when operating at high power. Thus, the gold-doped silicon substrate provides a less expensive packaging in which to place RF MEMS devices, wherein the packaging is capable of operating at high power with reduced harmonic distortion.
Abstract:
Devices and related methods use a decoupling loop near closely spaced inductors that couples to each inductor and adds an additional coupling path between them, canceling the effects of the direct coupling between the inductors. When two inductors are close enough that undesired magnetic coupling between the inductors is possible, a decoupling loop adjacent the inductors is added that is configured to cancel the undesired magnetic coupling between the inductors. The decoupling loop is positioned, with respect to the first and second inductors, such that coupling between the decoupling loop and the first inductor induces a decoupling loop current around the decoupling loop and induces a second induced current on the second inductor that is equal and in an opposite direction to a first induced current on the second inductor caused by the first inductor. The undesired magnetic coupling between the conductors is reduced, and may even be totally cancelled.
Abstract:
RF communications circuitry, which includes a first group of RF power amplifier circuits and a first weakly coupled RF network, is disclosed. The first group of RF power amplifier circuits includes a first RF power amplifier circuit, which receives and amplifies a first RF amplifier input signal to provide a first RF amplifier output signal, and a second RF power amplifier circuit, which receives and amplifies a second RF amplifier input signal to provide a second RF amplifier output signal. The first weakly coupled RF network includes a first pair of weakly coupled RF resonators coupled to the first RF power amplifier circuit and a second pair of weakly coupled RF resonators coupled to the second RF power amplifier circuit.
Abstract:
An RF electronics module includes a grounding plate, a non-conductive substrate, a number of conductive vias, RF PA circuitry, and RF power detection circuitry. The non-conductive substrate is over the grounding plate. The conductive vias extend parallel to one another from a surface of the non-conductive substrate opposite the grounding plate through the non-conductive substrate to the grounding plate. The RF PA circuitry is coupled to the grounding plate through a first one of the conductive vias. The RF power detection circuitry is coupled to a second one of the conductive vias and configured to measure a signal induced in the second one of the conductive vias due to electromagnetic coupling with the first one of conductive vias. The first one of the conductive vias is adjacent to the second one of the conductive vias.
Abstract:
A radio frequency (RF) amplification device comprises an RF amplification circuit, and a dynamic level shifter (DLS) circuit coupled between a supply voltage and the RF amplification circuit. The DLS circuit is configured to provide a first shifted voltage to the RF amplification circuit via a first diode when the supply voltage is above a first threshold voltage level. The DLS circuit is further configured to provide a second shifted voltage to the RF amplification circuit via a first shunt transistor when the supply voltage is below the first threshold voltage level, wherein the supply voltage less the second shifted voltage is less than the supply voltage less the first shifted voltage.