Abstract:
Detection of objects such as a buried explosive device while operating from a moving platform using a radio frequency emission system having two modes. An electromagnetic wave emission and detection system operates in a first mode to locate objects of interest and in a second mode to determine if an object contains explosive materials. In the first mode, the emission and detection system preferably operates as a subwavelength focusing, wideband, superlens using a near field super gain synthetic aperture continuous wave (CW) swept radar. In the second mode the system preferably enabled after detection of an object in the first mode, uses chemical detection methods such as Nuclear Quadrupole Resonance (NQR).
Abstract:
Dispersive properties of a linear dispersive delay line are retained in a spiral configuration by constraining the radius of curvature depending on a desired propagation mode. The compact form factor spiral can be either a continuous spiral or a piecewise linear approximation. The spiral comprises a highly dielectric waveguide such as titanium dioxide or barium tetratitanate. Preferably, a spacer with a low dielectric constant and a microstrip are disposed on the top surface. The microstrip prevents attenuation of low frequencies, thereby increasing the operating frequency range. A second dielectric spacer and a second microstrip can be deposited on the bottom surface of the waveguide. Alternatively, the bottom surface of the waveguide can face a ground plane. The waveguide can be fed by horns or half-horns.
Abstract:
Detection of objects such as a buried explosive device while operating from a moving platform using a radio frequency emission system having two modes. An electromagnetic wave emission and detection system operates in a first mode to locate objects of interest and in a second mode to determine if an object contains explosive materials. In the first mode, the emission and detection system preferably operates as a subwavelength focusing, wideband, superlens using a near field super gain synthetic aperture continuous wave (CW) swept radar. In the second mode the system preferably enabled after detection of an object in the first mode, uses chemical detection methods such as Nuclear Quadrupole Resonance (NQR).
Abstract:
A loop antenna in an electric vehicle receives energy wirelessly from a source external to the vehicle, such as from a Radio Frequency (RF) emitter. The use of RF loop antennas to both transmit and receive power greatly reduces the need to align the vehicle with charging station equipment.
Abstract:
An antenna assembly operating in the AM/FM, 3G and 4G cellular, WiFi, Bluetooth, satellite and 5G bands. The assembly provides a wide bandwidth, orientation dependent, directional antenna via volumetric radiating elements that conformal to exterior surface(s) of a vehicle such as a passenger car. The volumetric antenna elements may be further controlled by embedded components and/or surrounded by controllable ground plane elements. In one application, the antenna may be used to detect a direction of approach by person to, for example, operate only certain door locks.
Abstract:
A touchscreen, now incorporated in most smartphones, tablets, laptops, and similar devices, presents an effective and transparent method to incorporate continuous active user verification schemes. The touchscreen element grid structure can be used to capture information, such as a set of one-dimensional time-varying signals produced as the user's finger moves past the grid intersections points. This information may be used to verify the user, or that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification process. Further functions, such as habitual gesture recognition, can also be performed using the same grid outputs.
Abstract:
A prism coupled waveguide-fed solar collector array optimized for geometric fill factor. An integrated linear array of prisms is arranged with their input faces in a common plane. The exit faces of the prisms each feds a corresponding optical waveguide and detector.
Abstract:
The use of rectennas, or antenna-coupled rectifiers, using metal-insulator-metal tunnel diodes as rectifiers for energy conversion has been explored with more fervor recently, given the advances in nanotechnology fabrication and increased resolution of features. Some have made these devices from symmetric metals (e.g. Ni—NiO—Ni) and asymmetric metals (e.g. Al—AlOx/Pt), and have used deposited oxides as well as native oxides. One key to obtaining a highly asymmetric device with efficient current generation needed for high conversion efficiency is to instead use dissimilar metals and a thin reproducible oxide. The described method allows for a thin, reproducible native oxide of nickel be integrated with any antenna metal to overcome oxide surface roughness problems that typically hamper the practicality of these devices.