Abstract:
A programmable logic device (PLD) includes first and second circuits. The first and second circuits are part of a user's design to be implemented using the PLD's resources. The first circuit is powered by a first supply voltage. The second circuit is powered by a second supply voltage. At least one of the first and second supply voltages is determined by a PLD computer-aided design (CAD) flow used to implement the user's design in the PLD.
Abstract:
A programmable logic device (PLD) includes at least two regions. Each region includes electrical circuitry that has a set of transistors. Each of the two regions has a corresponding fixed transistor threshold voltage, a corresponding fixed transistor body bias, and a corresponding fixed supply voltage.
Abstract:
Apparatus having corresponding methods comprises a reference clock; a receiver to receive a wireless television signal, wherein the wireless television signal is transmitted by a television transmitter according to a transmitter clock; and a clock offset unit to determine a clock offset between the reference clock and the transmitter clock based on the wireless television signal.
Abstract:
Techniques are provided for increasing flexibility to I/O banks with respect to supply voltages. Multiple supply voltages can be provided to a bank of I/O pins. Separate I/O pins residing in an I/O bank are driven by buffers that are coupled to different supply voltages. Dedicated I/O pins are driven by buffers with pre-selected supply voltages. The dedicated I/O pins can be grouped together into the same I/O bank providing greater flexibility to drive signals on I/O pins in other I/O banks at different voltages. Also, a dual mode input buffer can drive an input signal to a voltage determined by one of two possible supply voltage levels. In addition, power on reset circuits for an I/O bank can monitor the voltage of two or more supply voltages.
Abstract:
Disclosed is an LE that can provide a number of advantageous feature. For example, the LE can provide efficient and flexible use of LUTs and input sharing. The LE may also provide for flexible use of one or more dedicated adders and include register functionality.
Abstract:
A bridging fault detection system allows for a high amount of test coverage using a low number of test configurations. The bridging fault detection system automatically creates optimal test configurations and test vectors without the need for precise layout information, and is adaptable to complex programmable device architectures. Testers can specify a precise level of testing coverage to optimize the testing processing. A programmable device with interconnect bias circuitry decreases the number of test configurations and thus the time needed to test for bridging faults. The interconnect bias circuit provides explicit test control over the unused lines in a configuration, driving them both high and low for complete test coverage between each line and all of its possible neighbors. The bridging fault detection system balances the available number of control test points against the number of interconnect segments stitched together by programmable connection to maximize the lines under test per configuration.
Abstract:
A transmission device for use in an air compressor includes a first gear connectable to the motor shaft, a second gear connectable to the compressor shaft and a gear assembly provided with a third gear mated with the first gear and a fourth gear mated with the second gear so that rotation of the motor shaft drives the first gear to rotate, which drives the third gear and the fourth gear to rotate and thus the compressor shaft is rotated.
Abstract:
In accordance with one aspect of the invention, a hole is formed within an LE array of a PLD by interrupting the LE array base signal routing architecture such that a hole is left for IP function block to be incorporated. An interface region is provided for interfacing the remaining LE array base signal routing architecture to the IP function block.
Abstract:
A logic element includes memory elements, multiplexers, and controls. The multiplexers are arranged in levels including a highest level of multiplexers with inputs connected to the memory elements and outputs connected to inputs of a next-to-highest level of multiplexers and a first level of multiplexers with inputs connected to outputs of a second level of multiplexers and at least one output. The controls are connected to the multiplexers. In a first operational mode the controls determine a first-mode output at the at least one output of the first level of multiplexers, and in a second operational mode the controls determine a plurality of second-mode outputs at selected outputs of multiplexers not at the first level of multiplexers.
Abstract:
An electronic device comprises a first plurality of configuration elements connected as a shift register for programming a subset of the programmable functions of the electronic device. The subset of programmable functions may be reprogrammed by loading configuration data into the first plurality of configuration elements such that the subset of programmable functions may be reprogrammed without necessarily reprogramming other programmable functions of the electronic device.