PROCESS FOR MANUFACTURING MICRO-ELECTRONIC COMPONENTS

    公开(公告)号:US20210066133A1

    公开(公告)日:2021-03-04

    申请号:US16988892

    申请日:2020-08-10

    Abstract: A method is provided for producing a component based on a plurality of transistors on a substrate including an active area and an electrical isolation area, each transistor including a gate and spacers on either side of the gate, the electrical isolation area including at least one cavity formed as a hollow between a spacer of a first transistor of the plurality of transistors and a spacer of a second transistor of the plurality of transistors, the first and the second transistors being adjacent, the method including: forming the gates of the transistors; forming the spacers; and forming a mechanically constraining layer for the transistors; and after forming the spacers and before forming the mechanically constraining layer, forming a filling configured to at least partially fill, with a filling material, the at least one cavity within the electrical isolation area, between the spacers of the first and the second transistors.

    METHOD FOR PRODUCING AT LEAST ONE DEVICE IN COMPRESSIVE STRAINED SEMICONDUCTOR

    公开(公告)号:US20210005443A1

    公开(公告)日:2021-01-07

    申请号:US16914541

    申请日:2020-06-29

    Abstract: Method for producing a semiconductor device, including: producing, on a first region of a surface layer comprising a first semiconductor and disposed on a buried dielectric layer, a layer of a second compressive strained semiconductor along a first direction; etching a trench through the layer of the second semiconductor forming an edge of a portion of the layer of the second semiconductor oriented perpendicularly to the first direction, and wherein the bottom wall is formed by the surface layer; thermal oxidation forming in the surface layer a semiconductor compressive strained portion along the first direction and forming in the trench an oxide portion; producing, through the surface layer and/or the oxide portion, and through the buried dielectric layer, dielectric isolation portions around an assembly formed of the compressive strained semiconductor portion and the oxide portion; and wherein the first semiconductor is silicon, the second semiconductor is SiGe, and said at least one compressive strained semiconductor portion includes SiGe.

    METHOD OF PRODUCING MICROELECTRONIC COMPONENTS

    公开(公告)号:US20200211906A1

    公开(公告)日:2020-07-02

    申请号:US16712158

    申请日:2019-12-12

    Abstract: A method is provided for producing a microelectronic component on a substrate including in an exposed manner on a first face thereof, an active zone and an electrical isolation zone adjacent thereto, the method including forming a gate on the active zone, forming spacers each configured to cover a surface of a different edge of the gate, and forming source and drain zones by doping portions of the active zone adjacent to the gate, the method successively including forming a first layer of spacer material above the active zone and the electrical isolation zone; an ion implantation to produce doping of the portions through the first layer; removing a modified portion of the first layer disposed overlooking the portions, the modified portion coming from the ion implantation, the removing being configured to preserve at least part of the first layer at a level of edges of the gate.

    METHOD FOR PRODUCING PATTERNS IN A SUBSTRATE
    55.
    发明申请

    公开(公告)号:US20200090941A1

    公开(公告)日:2020-03-19

    申请号:US16616275

    申请日:2018-05-24

    Abstract: A method for producing at least one pattern in a substrate is provided, including providing a substrate having a front face surmounted by at least one masking layer carrying at least one mask pattern, carrying out an ion implantation of the substrate so as to form at least one first zone having a resistivity ρ1 less than a resistivity ρ2 of at least one second non-modified zone, after the ion implantation step, immersing the substrate in an electrolyte, and removing the at least one first zone selectively at the at least one second zone, the removing including at least an application of an electrochemistry step to the substrate to cause a porosification of the at least one first zone selectively at the at least one second zone.

    METHOD FOR THE DIRECTED SELF-ASSEMBLY OF A BLOCK COPOLYMER BY GRAPHOEPITAXY

    公开(公告)号:US20190278170A1

    公开(公告)日:2019-09-12

    申请号:US16304897

    申请日:2017-05-23

    Abstract: A method for the directed self-assembly of a block copolymer by graphoepitaxy, includes forming a guide pattern, the guide pattern having a cavity with a bottom and side walls; forming a functionalisation layer on the guide pattern that has a first portion and a second portion disposed, respectively, on the bottom and side walls of the cavity; forming a protective layer on the first and second portions of the functionalisation layer; etching the protective layer and the second portion of the functionalisation layer such that a portion of the protective layer is retained and the side walls of the cavity are exposed, the retained portion of the protective layer having a thickness of less than 15 nm; selectively etching the portion of the protective layer relative to the first portion of the functionalisation layer and to the guide pattern; and depositing a block copolymer in the cavity.

Patent Agency Ranking