Abstract:
The memory cell of the present invention has two independent storage regions embedded into two opposite sidewalls of the control gate respectively. In this way, the data storage can be more reliable. Other features of the present invention are that the thickness of the dielectric layers is different, and the two independent storage regions are formed on opposite bottom sides of the opening by the etching process and form a shape like a spacer. The advantage of the aforementioned method is that the fabricating process is simplified and the difficulty of self-alignment is reduced.
Abstract:
A manufacturing method of a non-volatile memory includes forming a first dielectric layer, a first conductive layer, and a first cap layer sequentially on a substrate to form first gate structures; conformally forming a second dielectric layer on the substrate; forming a first spacer having a larger wet etching rate than the second dielectric layer on each sidewall of each first gate structure; partially removing the first and second dielectric layers to expose the substrate. A third dielectric layer is formed on the substrate between the first gate structures; removing the first spacer; forming a second conductive layer on the third dielectric layer; removing the first cap layer and a portion of the first conductive layer to form second gate structures; and forming doped regions in the substrate at two sides of each second gate structure.
Abstract:
A flash memory cell includes a substrate, a T-shaped control gate disposed above the substrate, a floating gate embedded in a lower recess of the T-shaped control gate, a dielectric layer between the T-shaped control gate and the floating gate; a cap layer above the T-shaped control gate, a control gate oxide between the T-shaped control gate and the substrate, a floating gate oxide between the floating gate and the substrate, a liner covering the cap layer and the floating gate, and a source/drain region adjacent to the floating gate. The floating gate has a vertical wall surface that is coplanar with one side of the dielectric layer.
Abstract:
A semiconductor component includes a substrate, two isolation structures, a conductor pattern and a dielectric layer. The isolation structures are disposed in the substrate, and each of the isolation structures has protruding portions protruding from the surface of the substrate. A trench is formed between the protruding portions. The included angle formed by the sidewall of the protruding portion and the surface of the substrate is an obtuse angle. The conductor pattern is disposed in the trench and fills the trench up. The dielectric layer is disposed between the conductor pattern and the substrate.
Abstract:
A floating gate and a fabricating method of the same. A semiconductor substrate is provided. A gate dielectric layer and a conducting layer are sequentially formed on the semiconductor substrate. A patterned hard mask layer having an opening is formed on the conducting layer, wherein a portion of the conducting layer is exposed through the opening. A spacer is formed on the sidewall of the opening. The patterned hard mask layer is removed. A conducting spacer is formed on the sidewall of the spacer. The exposed conducting layer and the exposed gate dielectric layer are sequentially removed.
Abstract:
The present invention provides a semiconductor structure having a lateral TSV and a manufacturing method thereof. The semiconductor structure includes a chip having an active side, a back side disposed opposite to the active side, and a lateral side disposed between the active side and the back side. The chip further includes a contact pad, a lateral TSV and a patterned conductive layer. The contact pad is disposed on the active side. The lateral TSV is disposed on the lateral side. The patterned conductive layer is disposed on the active side and is electrically connected to the lateral TSV and the contact pad.
Abstract:
The present invention provides a semiconductor structure having a lateral TSV and a manufacturing method thereof. The semiconductor structure includes a chip having an active side, a back side disposed opposite to the active side, and a lateral side disposed between the active side and the back side. The chip further includes a contact pad, a lateral TSV and a patterned conductive layer. The contact pad is disposed on the active side. The lateral TSV is disposed on the lateral side. The patterned conductive layer is disposed on the active side and is electrically connected to the lateral TSV and the contact pad.
Abstract:
A memory layout structure is disclosed, in which, a lengthwise direction of each active area and each row of active areas form an included angle not equal to zero and not equal to 90 degrees, bit lines and word lines cross over each other above the active areas, the bit lines are each disposed above a row of active areas, bit line contact plugs or node contact plugs may be each disposed entirely on an source/drain region, or partially on the source/drain region and partially extend downward along a sidewall (edge wall) of the substrate of the active area to carry out a sidewall contact. Self-aligned node contact plugs are each disposed between two adjacent bit lines and between two adjacent word lines.
Abstract:
A self-alignment method for a recess channel dynamic random access memory includes providing a substrate with a target layer, a barrier layer and a lining layer, wherein the target layer has shallow trench isolation structures; patternizing the lining layer, barrier layer and target layer to form recess trench channels; depositing a dielectric layer onto the recess trench channel; forming an ion doped region in the target layer; removing a portion of the dielectric layer to expose a portion of the recess trench channel; forming a filler layer covered onto the recess trench channel; removing a portion of the filler layer to expose a portion of the recess trench channel; forming a passivation layer onto the recess trench channel; removing the passivation layer on the lining layer; and removing the lining layer to form a plurality of structural monomers disposed at the recess trench channel and protruded from the target layer.
Abstract:
A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.