摘要:
A method of manufacturing an inter-metal level dielectric layer for a semiconductor device. The method includes forming spaced conductive lines. Next, a first conformal silicon oxide film (barrier layer) is formed over the spaced conductive lines. Gaps or valleys are between the metal lines covered by the barrier layer. A novel first “gap filling” spin-on-glass layer is formed over the first silicon oxide layer. In a critical step, the first SOG layer is heated to reflow thereby flowing all the first spin-on-glass layer from over the metal lines and leaving all of the first SOG layer in the gaps. Subsequently, a second silicon oxide layer is deposited over the first silicon oxide layer and over the first spin-on-glass layer only in the gaps. A second spin-on-glass layer is then formed over the second silicon oxide layer. An etchback is performed by etching back and removing the entire second spin on glass layer and portions the second silicon oxide layer. Lastly, an insulating cap layer of silicon oxide or silicon nitride is formed over the second silicon oxide layer.
摘要:
A method for forming planarized shallow trench isolation is described. A nitride layer is deposited over the surface of a semiconductor substrate. A plurality of isolation trenches are etched through the nitride layer into the semiconductor substrate wherein there are at least one wide trench and at least one narrow trench. A first oxide layer is deposited over the first nitride layer and within the isolation trenches wherein the first oxide layer fills the isolation trenches. A capping nitride layer is deposited overlying the first oxide layer. A second oxide layer is deposited overlying the capping nitride layer. The second oxide layer is polished away wherein the second oxide layer and the capping nitride layer are left only within the wide trench. The first and second oxide layers are dry etched away with an etch stop on the capping nitride layer within the wide trench and the first nitride layer wherein the second oxide layer is completely removed. Thereafter, the first oxide layer is overetched to leave the top surface of the first oxide layer just above the bottom surface of the first nitride layer and the capping nitride layer within the wide trench. The capping nitride layer and the first nitride layer are removed completing the formation of shallow trench isolation regions in the fabrication of an integrated circuit device.
摘要:
A method for forming self-rounded shallow trench isolation is described. A pad oxide layer is provided over the surface of a semiconductor substrate. A nitride layer is then deposited overlying the pad oxide layer. Isolation trenches are then etched through the nitride and pad oxide layers into the semiconductor substrate. A layer of oxide is then deposited over the said nitride layer and within the isolation trenches. The oxide layer is then polished away through chemical and mechanical polishing wherein the substrate is planarized. The nitride layer is then etched away using a special dry-etch recipe that has a higher etching rate for silicon nitride than oxide. The dry-etch recipe also has a very low etching rate for the silicon substrate. This results in the removal of the nitride layer, rounding the shoulders of the trench and leaving the substrate unaffected. The fabrication of the integrated circuit device is completed.
摘要:
A method of removing microscratches in planarized dielectric surfaces covering conductor layers in submicron integrated circuit structures includes a semiconductor substrate having at least one dielectric layer formed thereon followed by a chemical mechanical polishing process for planarization. The removal of microscratches includes depositing a PE-CVD polymer layer to fill the microscratches, caused by CMP planarization, and to cover the planarized dielectric surface with a thin layer of the polymer. Deposition is followed by introducing an etching gas into the CVD chamber for an etch back of the just deposited polymer to well below the depth of the microscratches wherein the deposited polymer has the same etch rate as the dielectric layer formed thereunder.
摘要:
A chemical mechanical polish apparatus (FIG. 3B) for planarizing a semiconductor wafer (31) is disclosed. The apparatus includes a polishing pad (21) and a polishing head (32). The polishing pad includes a surface for polishing the semiconductor wafer. The surface has a hole (20). The polishing head is cooperatively engaged with the polishing pad. The polishing head holds the semiconductor wafer and applies it against the polishing pad. Both the polishing head and the polishing pad are rotatable.
摘要:
A planarzation process is crucial for submicron VLSI or ULSI fabrication, The method of the present invention comprises forming a stacked capacitor contact on a substrate, forming a first dielectric layer on the capacitor contact. Next an etching process is performed to etchback the first dielectric layer. Finally, a second dielectric layer is formed on the first dielectric layer. A thermal reflowing may be also used to increase the planarization.
摘要:
A method and system is disclosed for providing access to the body of a FinFET device. In one embodiment, a FinFET device for characterization comprises an active fin comprising a source fin, a depletion fin, and a drain fin; a side fin extending from the depletion fin and coupled to a body contact for providing access for device characterization; and a gate electrode formed over the depletion fin and separated therefrom by a predetermined dielectric layer, wherein the gate electrode and the dielectric layer thereunder have a predetermined configuration to assure the source and drain fins are not shorted.
摘要:
An integrated circuit comprises a substrate and a buried dielectric formed in the substrate. The buried dielectric has a first thickness in a first region, a second buried dielectric thickness in a second region, and a step between the first and second regions. A semiconductor layer overlies the buried dielectric.
摘要:
A metal line fabricating method includes the following steps. Firstly, a substrate is provided. Then, a first barrier layer is formed over the substrate. A first dielectric layer is formed over the first barrier layer. An opening is formed in the first dielectric layer, wherein the opening runs through the first dielectric layer, so that the first barrier layer is exposed to the opening. A metal deposition process is performed to form a metal line over the exposed first barrier layer at a bottom of the opening. The first dielectric layer and the first barrier layer underlying the first dielectric layer are removed, but the metal line and the first barrier layer underlying the metal line are remained. Afterwards, a second dielectric layer is formed over the substrate which is provided with the metal line and the first barrier layer.
摘要:
A method of manufacturing a microelectronic device includes forming a p-channel transistor on a silicon substrate by forming a poly gate structure over the substrate and forming a lightly doped source/drain region in the substrate. An oxide liner and nitride spacer are formed adjacent to opposing side walls of the poly gate structure and a recess is etched in the semiconductor substrate on opposing sides of the oxide liner. Raised SiGe source/drain regions are formed on either side of the oxide liner and slim spacers are formed over the oxide liner. A hard mask over the poly gate structure is used to protect the poly gate structure during the formation of the raised SiGe source/drain regions. A source/drain dopant is then implanted into the substrate including the SiGe regions.