摘要:
A low power maskless inter-well deep trench isolation structure and methods of manufacture such structure are provided. A method includes depositing a plurality of layers over a substrate, and forming a layer over the plurality of layers. The method also includes forming well structures in the substrate, and forming sidewall spacers at opposing sides of the layer. The method further includes forming a self-aligned deep trench in the substrate to below the well structures, by removing the sidewall spacers and portions of the substrate aligned with an opening formed by the removal of the sidewall spacers. The method also includes forming a shallow trench in alignment with the deep trench. The method further includes forming shallow trench isolation structures and deep trench isolation structures by filling the shallow trench and the deep trench with insulator material.
摘要:
Borderless self-aligned metal contacts to high density complementary metal oxide semiconductor (CMOS) circuits and methods for constructing the same. An example method includes creating an enclosed region for metal deposition defined by the gates of the adjacent transistors and an opposing pair of dielectric walls adjacent to source regions and drain regions of the adjacent transistors. The method further includes depositing a metal layer within the enclosed region. The metal contacts thus formed are self-aligned to the enclosed regions.
摘要:
A method includes defining active regions on a substrate, forming a dummy gate stack material over exposed portions of the active regions of the substrate and non-active regions of the substrate, removing portions of the dummy gate stack material to expose portions of the active regions and non-active regions of the substrate and define dummy gate stacks, forming a gap-fill dielectric material over the exposed portions of the substrate and the source and drain regions, removing portions of the gap-fill dielectric material to expose the dummy gate stacks, removing the dummy gate stacks to form dummy gate trenches, forming dividers within the dummy gate trenches, depositing gate stack material inside the dummy gate trenches, over the dividers, and the gap-fill dielectric material, and removing portions of the gate stack material to define gate stacks.
摘要:
A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
摘要:
A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
摘要:
Methods for fabricating dual-depth trench isolation regions for a memory cell. First and second deep trench isolation regions are formed in the semiconductor layer that laterally bound a device region in a well of a first conductivity type in the semiconductor layer. First and second pluralities of doped regions of a second conductivity type are formed in the device region. A shallow trench isolation region is formed that extends laterally across the device region from the first deep trench isolation region to the second deep trench isolation region. The shallow trench isolation region is disposed in the device region between the first and second pluralities of doped regions. The shallow trench isolation region extends into the semiconductor layer to a depth such that the well is continuous beneath the shallow trench isolation region. A gate stack controls carrier flow between a pair of the first plurality of doped regions.
摘要:
A nanowire field effect transistor (FET) device includes a first source/drain region and a second source/drain region. Each of the first and second source/drain regions are formed on an upper surface of a bulk semiconductor substrate. A gate region is interposed between the first and second source/drain regions, and directly on the upper surface of the bulk semiconductor substrate. A plurality of nanowires are formed only in the gate region. The nanowires are suspended above the semiconductor substrate and define gate channels of the nanowire FET device. A gate structure includes a gate electrode formed in the gate region such that the gate electrode contacts an entire surface of each nanowire.
摘要:
Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
摘要:
Semiconductor devices and methods that include forming a fin field effect transistor by defining a fin hardmask on a semiconductor layer, forming a dummy structure over the fin hardmask to establish a planar area on the semiconductor layer, removing a portion of the fin hardmask that extends beyond the dummy structure, etching a semiconductor layer adjacent to the dummy structure to produce recessed source and drain regions, removing the dummy structure, etching the semiconductor layer in the planar area to produce fins, and forming a gate stack over the fins.
摘要:
An integrated circuit apparatus is provided and includes first and second silicon-on-insulator (SOI) pads formed on an insulator substrate, each of the first and second SOI pads including an active area formed thereon, a nanowire suspended between the first and second SOI pads over the insulator substrate, one or more field effect transistors (FETs) operably disposed along the nanowire and a planar device operably disposed on at least one of the respective active areas formed on each of the first and second SOI pads.