摘要:
A composition of matter is disclosed comprising an intimate mixture of a particulate solid biomass material and a carbonaceous material. The composition is suitable for conversion to a bio-oil in a pyrolysis reaction. The carbonaceous material acts as a reducing agent during the pyrolysis reaction. The composition of matter produces bio-oil in a greater yield than prior art processes. The bio-oil is of improved quality, as evidenced by its low TAN value.
摘要:
A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed. In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.
摘要:
A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed; In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.
摘要:
Process for upgrading a liquid hydrocarbon feed comprising the steps of (a) preparing a slurry comprising the hydrocarbon feed having a boiling range above 350° C. and solid particles comprising a rehydratable material, (b) thermally treating said slurry at a temperature in the range of 250 to 550° C., (c) optionally separating the thermally treated slurry into (I) a lower boiling fraction and (ii) a higher boiling fraction containing the solid particles and formed coke, if any, and (d) separating the solid particles and formed coke, if any, from the thermally treated slurry resulting from step b) or the higher boiling fraction of step c).
摘要:
Process for the preparation of a catalyst comprising the steps of (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptised quasi-crystalline boehmite, (b) adding a monovalent acid to the slurry, (c) adjusting the pH of the slurry to a value above 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.
摘要:
Fluid catalytic cracking process comprising the steps of (a) preparing a physical 5 mixture comprising (i) aluminium trihydrate and/or flash-calcined aluminium trihydrate and (ii) a divalent metal oxide, hydroxide, carbonate, or hydroxycarbonate, (b) shaping the physical mixture of step a) to form fluidisable particles, and (c) adding the fluidisable particles obtained from step b) or step c) to a fluid catalytic cracking unit. In this FCC process, active sites of the catalyst composition are formed in-situ, i.e. in the FCC unit, without requiring peptisation, aging, or calcination steps prior to the addition of the composition to the hydrocarbon conversion unit.
摘要:
A composition comprising FCC catalyst particles and additive particles suitable for the reduction of NOx emissions from a FCC regenerator, said additive particles comprising a Mg and Al-containing anionic clay or solid solution, a rare earth metal oxide, alumina and/or silica-alumina, and Y-type zeolite. The invention further relates to a process for preparing such a composition and its use for reducing NOx emissions.
摘要:
The invention relates to a composition comprising anionic clay and rare earth metal hydroxy carbonate. This composition can suitably be used in FCC for the reduction of NOx and/or SOx emissions, the reduction of the S and/or N-content in fuels, and as a metal trap.The composition can be prepared by precipitating a divalent metal salt, a trivalent metal salt, and a rare earth metal salt to form a precipitate, calcining the precipitate at 200-800° C., and rehydrating the precipitate in the presence of a carbonate source to form a composition comprising anionic clay and a rare earth metal hydroxy carbonate.
摘要:
Disclosed is a hydrothermal treatment process for conversion of a carbon-based energy carrier material. The process comprises a step for sensitizing or activating the carbon based energy carrier material to increase its susceptibility to hydrothermal conversion. As a result of the sensitization step, the hydrothermal conversion step itself may be carried out under relatively mild conditions.The process comprises the steps of sensitizing the carbon-based energy carrier material to increase its susceptibility to hydrothermal conversion; and subjecting the sensitized carbon-based energy carrier material to hydrothermal conversion at a temperature of less than 300 degrees centigrade in a hydrothermal treatment reactor.
摘要:
Metal-containing composition and use thereof in catalytic reactions, which metal-containing composition is obtainable by contacting a metal hydroxy salt with a solution comprising one or more pH-dependent anions selected from the group consisting of pH-dependent boron-containing anions, vanadium-containing anions, tungsten-containing anions, molybdenum-containing anions, iron-containing anions, niobium-containing anions, tantalum-containing anions, aluminium-containing anions, and gallium-containing anions.