Abstract:
A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
Abstract:
A method of manufacturing a magnetoresistive stack/structure comprising etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer; depositing a first encapsulation layer on the sidewalls of the second magnetic region and over the dielectric layer; etching (i) the first encapsulation layer which is disposed over the exposed surface of the dielectric layer and (ii) re-deposited material disposed on the dielectric layer, wherein, thereafter a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region. The method further includes depositing a second encapsulation layer: (i) on the first encapsulation layer disposed on the sidewalls of the second magnetic region and (ii) over the exposed surface of the dielectric layer; and etching the remaining layers of the stack/structure (via one or more etch processes).
Abstract:
In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
Abstract:
Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A method of manufacturing a magnetoresistive-based device using a plurality of hard masks. The magnetoresistive-based device includes magnetic material layers formed between a first electrically conductive layer and a second electrically conductive layer, the magnetic materials layers including a tunnel barrier layer formed between a first magnetic materials layer and a second magnetic materials layer. In one embodiment, the method may include removing the first electrically conductive layer and the first magnetic materials layer unprotected by a first hard mask, to form a first electrode and a first magnetic materials, respectively, and removing the tunnel barrier layer and the second magnetic materials layer unprotected by a second hard mask to form a tunnel barrier and second magnetic materials, and the second electrically conductive layer unprotected by the second hard mask to form, and a second electrode.
Abstract:
The magnetic characteristics of a magnetoresistive device are improved by rendering magnetic debris non-magnetic during processing operations. Further improvement is realized by annealing the partially- or fully-formed device in the presence of a magnetic field in order to eliminate or stabilize magnetic micro-pinning sites or other magnetic abnormalities within the magnetoresistive stack for the device. Such improvement in magnetic characteristics decreases deviation in switching characteristics in arrays of such magnetoresistive devices such as those present in MRAMs.
Abstract:
A two-step etching process is used to form the top electrode for a magnetoresistive device. The etching chemistries are different for each of the two etching steps. The first chemistry used to etch the top portion of the electrode is more selective with respect to the conductive material of the top electrode, thereby reducing unwanted erosion of the photoresist and hard mask layers. The second chemistry is less corrosive than the first chemistry and does not damage the layers underlying the top electrode, such as those included in the magnetic tunnel junction.
Abstract:
A two-step etching process is used to form the top electrode for a magnetoresistive device. The level of isotropy is different for each of the two etching steps, thereby providing advantages associated with isotropic etching as well as more anisotropic etching. The level of isotropy is controlled by varying power and pressure during plasma etching operations.
Abstract:
A method is provided for forming a first via with an electrically conductive material, for example, copper, that is formed over and coupled to a conductive landing pad of an MRAM array. A sputter step is performed to lower the surface of the first via below that of a surrounding dielectric material. This recess is repeated in subsequent processing steps, providing alignment marks for the formation of a magnetic tunnel junction. The magnetic tunnel junction may be offset from the first via, and a second via being formed above the magnetic tunnel junction and to a conductive layer.