摘要:
Two images are stitched together through minimization of a cost function that consists of registration errors from image data of the two images, as well as the estimated errors from a set of sensors. The weight function in the cost function is derived from the confidence value of sensor estimation that considers the sensor errors including lift and off page as well as a measure of accuracy of the sensor readings. Weights are used to adjust image registration accuracy against sensor accuracy to produce a set of registration parameters that would best stitch the two images together. In order to handle large errors for initial registration parameters and to avoid local minima in the minimization process, the image pair may be registered in a lower resolution and then refined in a higher resolution.
摘要:
DeNOx catalysts for the reduction of NOx compounds and porous catalyst support materials are provided. The inventive catalysts comprise an active metal catalyst component and mixed TiO2/ZrO2 porous support particles that comprise a) a crystalline phase comprising titanium dioxide and/or a titanium/zirconium mixed oxide, b) an amorphous phase comprising zirconium, and c) a small amount of one or more metal oxide(s) or metalloid oxide(s) deposited on the amorphous outer layer. The inventive catalysts exhibit superior activity and ammonia selectivity.
摘要:
A method of reducing noise in an image comprises decomposing the image to generate wavelet coefficients at different scales. The wavelet coefficients are then modified based on the energy of the wavelet coefficients at the different scales. The image is reconstructed based on the modified wavelet coefficients.
摘要:
A method of preparing stable, transparent photocatalytic titanium dioxide sols is disclosed which involves thermal treatment of a suspension of amorphous titanium dioxide in the presence of certain alpha-hydroxy acids. The sots comprise titanium dioxide particles in the anatase form having a crystallite size less than about 10 nm and exhibit excellent stability and transparency at basic, neutral, and acid pH.
摘要:
Disclosed are methods, devices, and computer program products for image noise reduction. In one example embodiment, a method for reducing noise in a digital image includes several acts. First, one or more objects are identified in an input image. Next, the input image or a portion thereof is processed to produce another image, which may be a blurred version of the input image. Finally, one or more objects in the processed image that correspond to the one or more objects identified in the input image are evaluated to determine whether to discard the one or more objects identified in the input image. For example, if an amount of energy preserved in an object after blurring is less than a threshold, the object may be discarded as noise.
摘要:
A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNox catalyst applications.
摘要:
The present invention is directed to high activity titanium oxide DeNOx catalysts. In preferred embodinents, by depositing vanadium oxide on a titania supported metal oxide such as tungsten oxide, an improved catalyst may be generated. This catalyst may be used in the treatment of exhaust from sources such as automobiles and industrial plants.
摘要:
A catalyst comprising a spray-dried transition metal zeolite and a noble metal is disclosed. The spray-dried transition metal zeolite comprises a transition metal zeolite and a binder. At least 50 wt. % of the binder is titania. The catalyst is used in a process to produce an epoxide by reacting an olefin, hydrogen, and oxygen. The catalyst is easy to filter from a slurry and produces a reduced level of hydrogenation products.
摘要:
A method, apparatus and image capture device for limiting motion blur during capture of an image predetermines a relationship between movement of the image capture device, time and blur extent. A rate of movement of the image capture device is obtained and used in conjunction with the determined relationship and a blur extent limit as a basis for obtaining a maximum exposure time for the image capture device in order to limit blur extent. On the basis of the maximum exposure time obtained and a required image brightness, the image capture device is configured, and then an image is captured by the image capture device. Once the image has been captured, due to the possibility of under-exposure from having limited the exposure time, the image is processed as required to increase its intensity.