Abstract:
A continuously variable valve lift apparatus may include a camshaft, a cam portion on which a cam is formed and into which the camshaft is inserted, a slider housing into which the cam portion is rotatably inserted and disposed to be rotatable around a pivot shaft, a control portion configured to selectively rotate the slider housing around the pivot shaft, a rotation deliverer configured to transmit rotation of the camshaft to the cam portion, an output portion rotatable around the pivot shaft and on which a valve shoe is formed, and a valve device configured to be driven by the valve shoe.
Abstract:
A method for controlling valve timing of a continuous variable valve duration engine may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap between an exhaust valve and an intake valve by using an exhaust valve closing (EVC) timing in a first control region; advancing an intake valve closing (IVC) timing and applying a maximum duration to the exhaust valve in a second control region; advancing the IVC timing and the EVC timing in a third control region; controlling the EVC timing in a fourth control region; controlling a throttle valve to be fully opened and controlling the IVC timing in a fifth control region; and controlling the throttle valve to be fully opened and advancing the IVC timing in a sixth control region.
Abstract:
A control method for exhaust gas recirculation of a hybrid electric vehicle includes detecting a pressure of an intake manifold. A difference between the pressure of the intake manifold and atmospheric pressure is determined. A load of an engine, which generates torque by combusting a fuel and external air supplied through the intake manifold, is determined. An opening rate of an exhaust gas recirculation valve is controlled to be a first value according to a rotational speed of the engine when the difference is smaller than or equal to a reference pressure and the load of the engine is smaller than or equal to a reference load.
Abstract:
A continuous variable valve duration apparatus is provided. The apparatus includes a camshaft and a cam unit on which a cam is formed. The camshaft is inserted into the cam unit. An inner wheel transmits rotation of the camshaft to the cam unit. The inner wheel is rotatably inserted in a wheel housing a housing hinge aperture parallel to the camshaft is formed on the wheel housing. A slider hinge aperture and a slider control aperture parallel to the camshaft are formed through a slider. A hinge shaft is inserted into the housing hinge aperture and the slider hinge aperture. An eccentric cam is formed on a control shaft and is inserted into the slider control aperture. A controller selectively rotates the control shaft to move the wheel housing perpendicular to the camshaft via the slider.
Abstract:
A method for controlling valve timing for an engine includes: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling an exhaust valve to limit a valve overlap in a first region; controlling the intake valve and the exhaust valve to maintain the maximum duration in a second region; advancing an intake valve closing (IVC) timing and an exhaust valve closing (EVC) timing in a third region; approaching the IVC timing to a bottom dead center (BDC) in a fourth region; controlling a throttle valve to be fully opened, advancing an intake valve opening (IVO) timing before a top dead center (TDC), and controlling the IVC timing to be a predetermined value after the BDC in a fifth region; and controlling the throttle valve to be fully opened and advancing the IVC timing in a sixth region.
Abstract:
A continuous variable valve duration apparatus is provided. The apparatus includes a camshaft and a cam unit on which a cam is formed. The camshaft is inserted into the cam unit. An inner wheel transmits rotation of the camshaft to the cam unit. The inner wheel is rotatably inserted in a wheel housing a housing hinge aperture parallel to the camshaft is formed on the wheel housing. A slider hinge aperture and a slider control aperture parallel to the camshaft are formed through a slider. A hinge shaft is inserted into the housing hinge aperture and the slider hinge aperture. An eccentric cam is formed on a control shaft and is inserted into the slider control aperture. A controller selectively rotates the control shaft to move the wheel housing perpendicular to the camshaft via the slider.
Abstract:
A method for controlling valve timing of a turbo engine may include: classifying by a controller control regions depending on an engine speed and an engine load, and the control regions may include first, second, third, fourth, fifth, and sixth control regions. The method further includes: applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; applying the maximum duration to the intake valve and exhaust valve in the second control region; advancing an intake valve closing (IVC) timing and an exhaust valve closing (EVC) timing in the third control region; approaching the IVC timing to a bottom dead center in a fourth control region; controlling a wide open throttle valve (WOT) in the fifth control region; and controlling the WOT and the IVC timing to reduce the knocking in the sixth control region.
Abstract:
A method for controlling valve timing is provided for an engine including continuous variable duration (CVVD) device disposed on both intake valve and exhaust valve sides respectively. The method may include: classifying control regions into first, second, third, fourth, and fifth control regions based on engine load and speed; applying a maximum duration to an intake valve and controlling a valve overlap in a first control region, applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a throttle valve to be fully opened, advancing an intake valve closing (IVC) timing, and controlling an exhaust valve closing (EVC) timing to after top dead center in the fourth control region; and controlling a wide open throttle valve (WOT) and retarding the intake valve closing in the fifth control region.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap between the intake valve and an exhaust valve in a first control region; maintaining the maximum duration of the intake valve and applying a maximum duration to the exhaust valve in a second control region; maintaining a manifold absolute pressure (MAP) at a predetermined pressure in a third control region; controlling a throttle valve to be fully opened and generating the valve overlap in a fourth control region; and controlling the throttle valve to be fully opened and controlling intake valve closing (IVC) timing according to the engine speed in a fifth control region.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration. The method may include: classifying a plurality of control regions depending on an engine speed and an engine speed; applying a maximum duration to an intake valve in a first control region; maintaining the maximum duration of the intake valve and controlling the exhaust valve to reach a maximum duration in a second control region; advancing intake valve closing (IVC) timing and exhaust valve closing (EVC) timing in a third control region; controlling the IVC timing to be close to bottom dead center (BDC) in a fourth control region; controlling a throttle valve to be fully opened and controlling the IVC timing to an angle after BDC in a fifth control region; and controlling the throttle valve to be fully opened and advancing the IVC timing in a sixth control region.