摘要:
A device is provided for a chemical reaction between molecules immobilized on a solid phase and molecules in a solution. A chemical analysis device is also provided to capture molecules in the solution and subsequently measure the captured molecules. Reaction efficiency and sample throughput are thereby improved. The chemical reaction and chemical analysis devices use a microfluidic device channel as a reaction vessel. The channel is provided with a particular molecule immobilized on an interior surface of the channel with an obstacle positioned against the flow. In a typical reaction vessel having an enzyme immobilized in the capillary's interior surface and glass beads as obstacles, a reaction solution can move either in one direction or back and forth to react with the immobilized enzyme. The flow of the reaction solution is not laminar such that a reaction between the particular molecule and the reaction solution proceeds at high efficiency.
摘要:
An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
摘要:
The sample container has a two-layer membrane filter comprising a first layer as an upper layer serving as a hydrophilic membrane filter and a hydrophobic membrane filter as an underlying second layer capable of filtering an aqueous solution without the use of a wetting agent and by means of a formed negative pressure. Using this sample container, a large amount of an aqueous sample solution is filtered by means of a negative pressure formed by a suction portion to capture microbes in the aqueous sample solution by the hydrophilic membrane filter. Then, the negative pressure is restored to normal pressure, and a microbial dissolution solution is then added to the membrane filter to retain the microbial dissolution solution for a given time on the hydrophobic membrane filter. Then, the microbial dissolution solution is dispensed to a reaction container containing a luminescent reagent, and luminescence is detected to detect the microbes.
摘要:
A chemical reaction device is provided for a chemical reaction between molecules immobilized on a solid phase and molecules in a solution, and a chemical analysis device is also provided to capture molecules in the solution by molecules immobilized on the solid phase through a chemical reaction and subsequent measurement of the captured molecules. Reaction efficiency as well as sample throughput are thereby improved. The chemical reaction device and the chemical analysis device use a channel of a microfluidic device for a reaction vessel, and at least a particular molecule is immobilized on an interior surface and a fixed structure or a non-fixed obstacle against a flow is provided in the channel. In a typical reaction vessel having an enzyme immobilized on an interior surface of a capillary and glass beads functioning as an obstacle for the flow filled in the channel of the capillary, a reaction solution can move either in one direction or back and forth in two directions to thereby undergo a reaction with the enzyme immobilized on the interior surface. The flow of the reaction solution is not a laminar flow so that a reaction between the particular molecule immobilized and the reaction solution proceeds at high efficiency.
摘要:
The present invention provides a luminescence measuring method that can be accurately and quickly carried out while inhibiting a possible background associated with viable bacteria adhering to a nozzle or Adenosine Tri Phosphate remaining in the nozzle, and an apparatus for the method. The present invention uses a washing apparatus characterized by including a nozzle, a lysys solution, a luminescence reagent solution, and a detection section, as well as a relevant washing method and a relevant luminescence measuring method. To remove viable bacteria adhering to the nozzle, the nozzle is immersed in the lysys solution and then in the luminescence reagent solution. The detection section monitors luminescence occurring during a washing process.
摘要:
In formulating a groove pattern for a diffraction grating by means of holography, unique groove patterns are obtained by use of astigmatic coherent beam as either one or two recording beams. Instead of use of only stigmatic beams, and astigmatism in recording light in manufacture of a halographic grating will bring more utilizable parameters in designing groove patterns by which new loci of the type of non-hyperboloidal curves are formed on grating substrates and thereby elimination of abberations which were conventionally difficult are achieved with various optical devices.
摘要:
A reagent splitting/dispensing method based on a reagent dispensing nozzle controls a split or dispensation amount of reagent, includes a waiting process of disposing a first air layer between an interface of the operation fluid and a nozzle tip end in the reagent dispensing nozzle; a first moving process of moving the reagent dispensing nozzle to a position above the reagent to be split; a second moving process of depositing the nozzle tip end in the reagent; an air layer adjusting process of increasing the occupation amount of the operation fluid in the reagent dispensing nozzle and decreasing the occupation amount of the first air layer, between the first moving process and the second moving process; and a reagent splitting process of decreasing the occupation amount of the operation fluid in the reagent dispensing nozzle and filling the reagent into the reagent dispensing nozzle from the nozzle tip end.
摘要:
The present invention enables liquid suction with a nozzle tip end in contact with a bottom surface of a container without causing damage to the nozzle and/or the bottom surface of the container.Plural rails 112 are disposed on an arm 101 movable three-dimensionally so as to extend upward from the arm 101, and a pipe 102 is fixed to a pipe fixing member 103 movable along the rails. A tip end of the pipe functions as a nozzle. Plural resilient members 114 are disposed on the arm so as to correct the inclination of the pipe fixing member. When the arm is moved downward and the tip end of the pipe comes in contact with the bottom of the container 106, the pipe and the pipe fixing portion move upward along the rails, so that the tip end of the pipe can be brought into contact with the bottom surface of the container while avoiding damages in the pipe and bottom of the container and suck liquid in the container in this state.
摘要:
An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member, and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
摘要:
There have been the following problems with sequence analysis using multiple nanopores: trapping a sample in the nanopores is not always 100% efficient and unnecessary time is spent to measure pores in which no sample has been trapped, resulting in low measurement efficiency. To address the problems, a labeling substance is boned to a sample, and the sample to which the labeling substance has been bonded is trapped in the nanopores. An apparatus for observing the labeling substance is used to observe the labeling substance and monitor whether or not the sample has been trapped in the nanopores. Measuring only nanopores in which the sample has been trapped allows the measurement efficiency to be improved.