Abstract:
A package comprising at least one electronic chip, a first heat removal body thermally coupled to a first main surface of the at least one electronic chip and configured for removing thermal energy from the at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, and part of the first heat removal body, wherein at least part of a surface of the first heat removal body is roughened.
Abstract:
In some examples, a device includes a high-side switch, a first high-side conductive element electrically connected to a first load terminal of the high-side switch, and a second high-side conductive element electrically connected to a second load terminal of the high-side switch. The device also includes a layer of cooling material encapsulating the high-side switch, the first high-side conductive element, and the second high-side conductive element. The device further includes a low-side switch, a first low-side conductive element electrically connected to a first load terminal of the low-side switch, and a second low-side conductive element electrically connected to a second load terminal of the low-side switch. The layer of cooling material encapsulates the low-side switch, the first low-side conductive element, and the second low-side conductive element.
Abstract:
A package comprising at least one electronic chip, a first heat removal body on which the at least one electronic chip is mounted by a first interconnection, a second heat removal body mounted on or above the at least one electronic chip by a second interconnection, and an encapsulant encapsulating at least part of the at least one electronic chip, part of the first heat removal body and part of the second heat removal body, wherein the first interconnection is configured to have another melting temperature than the second interconnection.
Abstract:
A package comprising at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, a first electrically conductive contact structure extending partially within and partially outside of the encapsulant and being electrically coupled with at least one first terminal of at least one of the at least one electronic chip, and a second electrically conductive contact structure extending partially within and partially outside of the encapsulant and being electrically coupled with at least one second terminal of at least one of the at least one electronic chip, wherein at least a portion of the first electrically conductive contact structure and at least a portion of the second electrically conductive contact structure within the encapsulant are spaced in a direction between two opposing main surfaces of the package.
Abstract:
An electronic module includes a circuit board, having a carrier layer, the carrier layer having a plurality of recess areas in a main surface thereof, and a plurality of electronic sub-modules, each one of the sub-modules being disposed in one of the recess areas and each one of the sub-modules having a carrier, a semiconductor chip disposed on the carrier, and an encapsulation material disposed on the carrier and on the semiconductor chip.
Abstract:
A hybrid vehicle including a hybrid power control unit (HPCU) is provided. The HPCU includes a power module having chips disposed therein, each of which generates heat during operation, a coolers that cools the heat from the power module. Additionally chip soldering interface material (SIM)s that bond the chips and the power module are provided to form interior solder layers. Further, a cooler Soldering Interface Material (SIM)s bonds the power module and the coolers to form an exterior solder layers. Consequently, improvements in cooling performance and a reduction in cost are achieved, without a variation in applied thickness and a pump-out phenomenon caused when using a TIM having low thermal conductivity.
Abstract:
According to an exemplary embodiment, a power module is provided which comprises a semiconductor chip, a bonding substrate comprising an electrically conductive sheet and an electric insulator sheet which is directly attached to the electrically conductive sheet and which is thermally coupled to the semiconductor chip, and an array of cooling structures directly attached to the electrically conductive sheet and configured for removing heat from the semiconductor chip when interacting with cooling fluid.
Abstract:
A power semiconductor module includes a power electronics substrate having a first surface, a second surface opposite the first surface, a first longitudinal side, a second longitudinal side opposite the first longitudinal side, a module frame, which is arranged to enclose the power electronics substrate, at least one power terminal which is arranged at the first longitudinal side and extends through the module frame, a further terminal, which is arranged at the second longitudinal side and extends through the module frame, at least one power semiconductor component which is arranged on the first surface of the power electronics substrate and is electrically connected to at least one power terminal, and at least one current sensor which is designed to measure a current in a power terminal. The at least one current sensor is arranged on the power terminal and has a signal output connected to the further terminal.