Abstract:
Some embodiments of an apparatus, system and method are described for a concealed venting thermal solution. An apparatus may comprise an enclosure arranged around one or more heat generating components, a duct arranged around an internal perimeter of the enclosure and a seam inlet arranged around an external perimeter of the enclosure to allow an airflow to enter the duct. Other embodiments are described.
Abstract:
Methods and apparatus for immersion cooling systems are disclosed herein. An example apparatus includes a base plate, fins extending from the base plate, a tube extending along an axis through the fins, the tube including an inlet, and a slot extending along the axis, the inlet, the slot, and the fins sequentially defining a flow pathway.
Abstract:
An electronic device is provided that includes a base, a processor, and a tablet having a front surface, a rear surface and a bottom edge surface. A processor may operate at a first operating condition when the tablet is coupled to the base, and the processor may operate at a second operating condition when the tablet is not coupled to the base. The tablet may include a heat conducting device and an active edge. The heat conducting device may conduct heat from the processor to the active edge where the heat may be dissipated using supplemental cooling.
Abstract:
Various systems and methods for providing a smart entry system are described herein. A smart entry system includes a detector to detect a person near a portal to a room; a transceiver to attempt to establish a wireless connection between the smart entry system and a user device associated with the person; and a user interface to present a notification to the person based on a state of the wireless connection.
Abstract:
Methods and apparatus to instruct movement based on sensor data. An example apparatus includes a sensor data receiver to receive sensor data from a sensor device, a preference receiver to receive a user preference, and a preference analyzer to: in response to determining that the sensor data indicates that the user preference is not met at a first location, determine if a second location has a condition that meets the user preference, and in response to determining that the second location has the condition that meets the user preference, transmitting a notification to instruct movement to the second location.
Abstract:
Various systems and methods for providing a smart entry system are described herein. A smart entry system includes a detector to detect a person near a portal to a room; a transceiver to attempt to establish a wireless connection between the smart entry system and a user device associated with the person; and a user interface to present a notification to the person based on a state of the wireless connection.
Abstract:
Briefly, in accordance with one or more embodiments, a smart base for a baseball system or a softball system comprises a sensor to detect a first time at which a runner has touched the smart base, a radio-frequency (RF) receiver to receive a signal from a smart baseball that indicates a second time at which the smart baseball was caught, timing circuitry to detect if the second time occurs before or after the first time; and indicator circuitry to indicate a force out if the second time occurs before the first time.
Abstract:
Various embodiments are generally directed to operation of a computing device powered with first and second sets of energy storage cells, the cells of the first set structurally optimized for higher density storage of electric power, and the cells of the second set structurally optimized for providing electric power at a high electric current level. A battery module includes a casing, a first cell disposed within the casing to store electric energy with a high density, and a second cell disposed within the casing to provide electric energy stored therein with a high current level. Other embodiments are described and claimed herein.
Abstract:
Robots and apparatus, systems and methods for powering robots are disclosed. A disclosed conductive floor to power a robot on the floor includes a plurality of stationary conductors positioned in a pattern and a power delivery circuit to cause adjacent ones of the conductors to have different electrical potentials, the adjacent ones of the conductors to form a circuit to deliver power to the robot via contacts formed in a bottom surface of the robot.
Abstract:
In one example a electronic device comprises a housing, at least one heat generating component disposed within the housing, at least one internal heat dissipation device positioned proximate the at least one heat generating component, and a thermal interface defined in at least a portion of the housing to allow direct thermal contact between the heat dissipation device and an external heat dissipation device. Other examples may be described.