Abstract:
Methods are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
Abstract:
Cooling apparatus and methods are provided for facilitating cooling of electronic components of an electronic system. The cooling apparatus includes a housing at least partially surrounding and forming a compartment about the components, and an immersion-cooling fluid is disposed within the compartment. At least one component of the electronic system is at least partially non-immersed within the fluid in the compartment. A wicking film element is physically coupled to a main surface of the at least one component and partially disposed within the fluid within the compartment. A coupling element physically couples the wicking film element to the main surface of the at least one component without the coupling element overlying the main surface of the component(s). As an enhancement, the wicking film element wraps over the component to physically couple to two opposite main sides of the component.
Abstract:
A method is provided which includes providing a cooling apparatus for an electronics rack which includes a door assembly configured to couple to an air inlet side of the electronics rack. The door assembly includes: one or more airflow openings facilitating passage of airflow through the door assembly and into the electronics rack; one or more air-to-coolant heat exchangers disposed so that airflow through the airflow opening(s) passes across the heat exchanger(s), which is configured to extract heat from airflow passing thereacross; and one or more airflow redistributors disposed in a direction of airflow through the airflow opening(s) downstream of, and at least partially aligned to, the heat exchanger(s). The airflow redistributor(s) facilitates redistribution of the airflow passing across the air-to-liquid heat exchanger(s) to a desired airflow pattern at the air inlet side of the electronics rack, such as a uniform airflow distribution across the air inlet side of the rack.
Abstract:
A method of fabricating a cooling unit is provided to facilitate cooling coolant passing through a coolant loop. The cooling unit includes one or more heat rejection units and an elevated coolant tank. The heat rejection unit(s) rejects heat from coolant passing through the coolant loop to air passing across the heat rejection unit. The heat rejection unit(s) includes one or more heat exchange assemblies coupled to the coolant loop for at least a portion of coolant to pass through the one or more heat exchange assemblies. The elevated coolant tank, which is elevated above at least a portion of the coolant loop, is coupled in fluid communication with the one or more heat exchange assemblies of the heat rejection unit(s), and facilitates return of coolant to the coolant loop at a substantially constant pressure.
Abstract:
Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
Abstract:
A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
Abstract:
Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
Abstract:
Liquid-cooled heat sink assemblies are provided which include: a heat transfer element including a heat transfer base with opposite first and second sides and a plurality of thermally conductive fins extending from the first side, and with the second side of the heat transfer base to couple to a component(s) to be cooled. The heat sink assembly further includes a coolant-carrying structure attached to the heat transfer element. The coolant-carrying structure includes a coolant-carrying base, and a coolant-carrying compartment through which liquid coolant flows. The coolant-carrying base includes a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins to extend therethrough. The plurality of thermally conductive fins extend into the coolant-carrying compartment through which the liquid coolant flows. In one or more embodiments, the heat transfer element is a metal structure and the coolant-carrying structure is a plastic structure.
Abstract:
Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
Abstract:
A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.