Abstract:
RF ground return current flow is diverted away from asymmetrical features of the reactor chamber by providing a bypass current flow path. The bypass current flow path avoids the pumping port in the chamber floor and avoids the wafer slit valve, and is provided by a conductive annular baffle grounded to and extending from the wafer pedestal. Current flow below the level of the annular baffle can be blocked by providing one or more insulating rings in the sidewall or by providing a dielectric sidewall.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
Abstract:
A workpiece is supported on the backside in a vacuum chamber while leaving at least a peripheral annular portion of a backside of the workpiece exposed. The process first increases the temperature of the workpiece starting at a temperature below about 200 degrees C. The edge of the workpiece is confined so as to establish a gap at the edge on the order of about 1% of the diameter of the chamber, the gap corresponding to a boundary between an upper process zone containing the front side and a lower process zone containing the backside. Before the workpiece temperature exceeds about 200 degrees C., backside polymer is removed using a first plasma containing polymer etch species in the lower process zone. After the workpiece temperature reaches about 300 degrees C., photoresist is stripped from the workpiece front side using by-products of a second plasma containing a photoresist strip species in the upper process zone.
Abstract:
A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving a peripheral annular portion of the backside exposed. The process further includes confining gas flow at the edge of the workpiece within a gap at the edge of the workpiece on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the front side and a lower process zone containing the backside. A first plasma is generated in a lower external chamber from a polymer etch precursor gas, and an etchant by-product is introduced from the first plasma into the lower process zone. A second plasma is generated in an upper external plasma chamber from a precursor gas of a scavenger of the etchant by-product, and scavenger species are introduced from the second plasma into the upper process zone.
Abstract:
A reactor is provided for removing polymer from a backside of a workpiece. The reactor includes a vacuum chamber having a ceiling, a floor and a cylindrical side wall. A workpiece support apparatus within the chamber is configured to support a workpiece thereon so that the workpiece has its front side facing the ceiling. The support apparatus leaves at least an annular periphery of the backside of the workpiece exposed. A confinement member defines a narrow gap with the outer edge of the workpiece, the narrow gap being on the order of about 1% of the workpiece diameter, the narrow gap corresponding to a boundary dividing the chamber between an upper process zone and a lower process zone. A vacuum pump is coupled to the lower process zone. The reactor further includes a local plasma-generating chamber and a nozzle disposed on a side of the workpiece support apparatus that is opposite a support surface of the workpiece support apparatus where the workpiece is to reside, the nozzle coupled to receive plasma from the local plasma-generating chamber. The nozzle is directed at a target area of the annular periphery so as to direct a plasma stream at the workpiece backside. A supply of a polymer etch precursor gas is coupled to the local plasma-generating chamber. A rotation actuator rotates the workpiece support apparatus relative to the nozzle.
Abstract:
A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving at least a peripheral annular portion of the backside exposed. The process further includes confining gas flow at the edge of the workpiece within a gap at the edge of the workpiece on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the wafer front side and a lower process zone containing the wafer backside. The process also includes providing a polymer etch precursor gas underneath the backside edge of the workpiece and applying RF power to a region underlying the backside edge of the workpiece to generate a first plasma of polymer etch species concentrated in an annular ring concentric with and underneath the backside edge of the workpiece.
Abstract:
An apparatus capable of processing a wafer, comprises a chamber adapted to process the wafer, whereby one or more parameters of the process being conducted in the chamber may change during processing of the wafer; and a signal analyzer adapted to receive a plurality of input signals relating to the parameters and provide an output signal in relation to the input signals.
Abstract:
A method and apparatus that provides process monitoring within a semiconductor wafer processing system using multiple process parameters. Specifically, the apparatus analyzes multiple process parameters and statistically correlates these parameters to detect a change in process characteristics such that the endpoint of an etch process may be accurately detected, as well as detecting other characteristics within the chamber. The multiple parameters may include optical emissia, environmental parameters such as pressure and temperature within the reaction chamber, RF power parameters such as reflected power or tuning voltage, and system parameters such as particular system configurations and control voltages.