摘要:
In a micromechanical component having an inclined structure and a corresponding manufacturing method, the component includes a substrate having a surface; a first anchor, which is provided on the surface of the substrate and which extends away from the substrate; and at least one cantilever, which is provided on a lateral surface of the anchor, and which points at an inclination away from the anchor.
摘要:
A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer. The etching process for producing the access opening includes at least one anisotropic etching step and at least one isotropic etching step, in the anisotropic etching step, an etching channel from the back side of the substrate being produced, which terminates beneath the first diaphragm layer in the vicinity of the cavity, and at least the end region of this etching channel being expanded in the isotropic etching step until the etching channel is connected to the cavity.
摘要:
A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
摘要:
The invention relates to a sensor comprising a first metallization plane located on a substrate (1), a passivation layer (6) that is structured by contact holes (7) and is applied to said substrate and a sensitive ceramic layer (9) formed by thick-film technology on the passivation layer and in the contact holes (7). The aim of the invention is to improve the adhesion of the ceramic layer (9). To achieve this, the sensor is provided with an adhesion promoter layer (8) that is configured as a second metallization plane and is located between the passivation layer (6) and the ceramic layer (9).
摘要:
A micromechanical device and a method for producing this device are provided, two sensor patterns being provided in the semiconductor material to record two mechanical variables, in particular the pressure and the acceleration. The functionality of both sensor patterns is based on the same predefined converter principle.
摘要:
A micromechanical sensor, and a method for manufacturing a micromechanical sensor, featuring, in addition to a sensor element, at least a part of an evaluation circuit. In this context, the micromechanical sensor contains at least a first structural element made of a first material. The first structural element houses at least one sensor region and a part of an evaluation circuit, at least one sensor element being located in the sensor region. Moreover, at least one first and one second side are to be distinguished from one another in the first structural element. The first side of the first structural element features at least the sensor element, while the second side of the first structural element features at least a part of the evaluation circuit. At least parts of the sensor region and/or of the evaluation circuit are formed from the first material by micromechanical processing.
摘要:
The invention relates to a gas sensor comprising a membrane layer (3) formed on a semiconductor substrate (2), an evaluation structure (7) being arranged on said substrate in an evaluation area (8) and a heating structure (9) outside the evaluation area (8), in addition to a gas-sensitive layer (10) arranged above the evaluation structure (7) and the heating structure (9), wherein said gas-sensitive layer (10) can be heated by the heating structure (9) and the electrical resistance of the gas-sensitive layer (10) can be evaluated by the evaluation structure (7). The heating structure (9) is arranged on an adhesion-promoting oxide layer (6) on the top surface of the membrane layer (3) and is separated from the gas-sensitive layer by a cover oxide layer (11). In order to enable reliable functionality of the gas sensor, that in the evaluation area (8), an adhesion-promoting layer (13) insensitive to oxide etching is arranged between the membrane layer (3) and the evaluation structure (7) or the evaluation structure (7) in the evaluation area (8) corresponding to the heating structure (9) is separated from the gas-sensitive layer (10) by the cover oxide layer (11), wherein the cover oxide layer (11) has contact holes (12) which uncover a central area of the surface of the evaluation structure (7) in order to produce a direct contact between the evaluation structure (7) and the gas-sensitive layer (10).
摘要:
A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
摘要:
A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
摘要:
A micromechanical sensor, and a method for manufacturing a micromechanical sensor, featuring, in addition to a sensor element, at least a part of an evaluation circuit. In this context, the micromechanical sensor contains at least a first structural element made of a first material. The first structural element houses at least one sensor region and a part of an evaluation circuit, at least one sensor element being located in the sensor region. Moreover, at least one first and one second side are to be distinguished from one another in the first structural element. The first side of the first structural element features at least the sensor element, while the second side of the first structural element features at least a part of the evaluation circuit. At least parts of the sensor region and/or of the evaluation circuit are formed from the first material by micromechanical processing.