Abstract:
The present invention 10 discloses a bridge cap comprising a compressible resilient material having a substantially oval shape with a planar surface on the distal ends 24 thereof. The bridge cap 10 has a cavity 28 with a pliable material 30 therein whereby the bridge cap can be releasably positioned on protruding pins 16 such that the pins extending from the fixator devices can be covered to prevent inadvertent potentially damaging contact with the protruding pins especially while sleeping.
Abstract:
A lighted fishing net is provided which uses a clear hollow frame around the perimeter of the net. A light source, such as an incandescent lamp, mounted internally to the frame, then illuminates the frame from within. A second light source, similar to a flashlight bulb in a reflector, is positioned at the top of the handle at the frame end to shine into the net area. The handle of the invention is made of hollow plastic to allow the invention to float as well as to contain the batteries. A three-way switches has three separate control positions: one to activate the frame light; one to activate the handle light; and one to turn them both off. It is also envisioned that the handle would fold in half to save storage space.
Abstract:
The binding specificity of at least one protein suspended or dissolved in a liquid medium is reversibly altered by exposing the protein to an oxidizing agent or an electric current. A masked protein such as an autoantibody can be detected, isolated and recovered from a biological fluid by subjecting the biological fluid to an oxidizing agent or an electric current to change the binding specificity of masked proteins contained therein.
Abstract:
A device and method for aligning a media sheet moving along a media path. An amount of skew that will occur as the media sheet moves along the media path is determined based on one or more physical characteristics. Previous testing of the device indicates that media sheets having particular physical characteristics will have a known amount of skew by the time they reach a predetermined location along the media path. The media sheet is moved the known amount so the media sheet is aligned. Test data is used to determine the amount of expected misalignment of the media sheet and the amount necessary to move the media sheet back into alignment.
Abstract:
A novel brake assembly is provided for a bicycle. The assembly is composed of an arrangement of a pair of brake pads each connected to a rod member in turn guided for axial movement by a base fixed on the bicycle frame. A bifurcated control cable actuates wedge members causing movement of the pads against a wheel rim. Return springs on the rod members cause the assembly to return to the original non-braking position in response to release of the control cable.
Abstract:
The binding specificity of at least one plasma protein suspended or dissolved in a liquid medium is altered by exposing the protein to an oxidizing agent or an electric current sufficient to alter its binding specificity. A masked protein such as an autoantibody can be recovered from blood or blood products or extracts by oxidizing the protein to change its binding specificity.
Abstract:
A tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. The graft includes a base graft and a reinforcing tape applied thereto. The tape may be spirally wrapped about the graft or spirally wrapped into a tube about a cylindrical mandrel and then applied to the exterior of the graft. Radial shrinkage of the combined base graft and tape, or of the reinforcing tape tube, renders the vascular graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel. Alternatively, radially enlargeable grafts of the present invention may be implanted by way of traditional surgical graft implantation techniques, without any radial enlargement of the graft at the time of implantation, so as to take advantage of the improved strength properties and suture-holding properties of the radially-shrunken tape-reinforced grafts of the present invention.
Abstract:
A universal aqueous composition and a process for using such a composition for pretreating metal substrates is provided. The aqueous composition includes a hydroxy functional cyclic compound, such as a tannin, in an amount of at least about 500 ppm, phosphate ions, an oxidizer-accelerator, and at least one Group IVB metal compound capable of converting to a metal oxide upon application to the metal substrate, such as a fluorozirconate or fluorotitanate. The composition may further contain fluoride ions and/or iron The composition is particularly useful for corrosion resistance with a variety of metals such as iron, steel; zinc-coated surfaces, aluminum, and alloys thereof. A disaccharide may further be provided to prolong the useful life of the composition, particularly when used in spray applications.
Abstract:
Stented tubular grafts of expanded, sintered polytetrafluoroethylene (PTFE). The stented PTFE grafts of the present invention include an integrally stented embodiment, an externally stented embodiment, and an internally stented embodiment. In each embodiment, the stent may be either self-expanding or pressure-expandable. Also, in each embodiment, the stent may be coated or covered with a plastic material capable of being affixed (e.g., heat fused) to PTFE. Manufacturing methods are also disclosed by the individual components of the stented grafts are preassembled on a mandrel and are subsequently heated to facilitate attachment of the PTFE layer(s) to one another and/or to the stent Optionally, the stented graft may be post-flexed and post-expanded following it's removal from the mandrel to ensure that the stented graft will be freely radially expandable and/or radially contractible over it's full intended range of diameters.
Abstract:
A method for improving the radial enlargeability and other properties of tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. Broadly, the method comprises the step of radially shrinking the reinforcement tape layer of the graft, or the entire tape-reinforced graft, after sintering thereof. Such radial shrinkage of the reinforcement tape layer, or of the entire graft, renders the graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel. Alternatively, radially enlargeable grafts of the present invention may be implanted by way of traditional surgical graft implantation techniques, without any radial enlargement of the graft at the time of implantation, so as to take advantage of the improved strength properties and suture-holding properties of the radially-shrunken tape-reinforced grafts of the present invention.