Abstract:
The direct conversion receiving apparatus has a gain control amplifier for variably amplifying a base band signal based on a gain switching control signal. A high pass filter has a first circuit including capacitors connected in parallel that are inserted in a path connecting an input terminal to an output terminal and switching effective total capacitance of the capacitors based on a first time constant switching control signal, and a second circuit including a resistor for providing a predetermined direct current voltage to the output terminal and switching the effective resistance value of the resistor based on a second time constant switching control signal. A control circuit outputs the gain switching control signal, and the first and second time constant switching control signals according to the change of the gain control of said gain control amplifier.
Abstract:
A wireless communication base station system of the present invention includes a wireless key base station, an optical forward base station, and an optical transmitter which connects the wireless key base station and the optical forward base station to each other. An optical signal modulated by a signal component and that modulated by a distortion component are transmitted from the wireless key base station to the optical forward base station. In the optical forward base station, these optical signals are converted to high-frequency electrical signals, and the high-frequency signal consisting of the signal component is amplified. Thereafter, the amplified signal is combined with the high-frequency signal consisting of the distortion component with their phases opposite to each other, so that the distortion component include in the amplified signal is removed.
Abstract:
A power amplifier of amplifying signals of two frequency bands is reduced in size and improved in efficiency at low output.The power amplifier includes an input terminal, a branch circuit and so on having one input and a plurality of outputs, the input being connected to the input terminal, amplifying means which are connected to some outputs of the branch circuit and so on and are operated at different signal frequencies from each other, a transmission line connected to one of the other outputs of the branch circuit, a synthesizing circuit connected to the outputs of the amplifying means and the output from the transmission line, a switch provided between the transmission line and a synthesis output unit, and a control circuit of controlling conduction of the branch circuit and so on, conduction and an amplifying operation of the amplifying means, and conduction of the switch.
Abstract:
An amplitude frequency characteristic adjustment circuit 106 is provided downstream of and connected to a distortion generation circuit 105. An amplitude difference between low-frequency-side and high-frequency-side distortion voltages is adjusted by the amplitude frequency characteristic adjustment circuit 106, and then their amplitudes and phases are adjusted by a vector adjustment circuit 107. This configuration makes it possible to suppress simultaneously both of low-frequency-side and high-frequency-side distortion voltages of a distortion generated by a wide-band class-AB power amplifier even if they are different in amplitude and phase.
Abstract:
An amplitude frequency characteristic adjustment circuit 106 is provided downstream of and connected to a distortion generation circuit 105. An amplitude difference between low-frequency-side and high-frequency-side distortion voltages is adjusted by the amplitude frequency characteristic adjustment circuit 106, and then their amplitudes and phases are adjusted by a vector adjustment circuit 107. This configuration makes it possible to suppress simultaneously both of low-frequency-side and high-frequency-side distortion voltages of a distortion generated by a wide-band class-AB power amplifier even if they are different in amplitude and phase.
Abstract:
An object of the present invention is to provide a semiconductor integrated circuit that reduces the influence of noise from a digital circuit block on an analog circuit block, both the circuit blocks being integrated on the same semiconductor substrate. In the wiring that passes through near the analog circuit block and the digital circuit block, having a grounding unit that performs alternate grounding makes it possible to reduce the influence of noise from the digital circuit block on the analog circuit block.
Abstract:
A differential type voltage control oscillator is formed of a differential tank circuit, an oscillation transistor, and a differential variable capacitance circuit. The differential variable capacitance circuit has a configuration wherein at least one pair of varactor diodes are connected in an anti-parallel manner, and are separated by means of a plurality of capacitors in a direct current manner. In addition, a differential control voltage is generated by a charge pump circuit which is controlled by the output of a phase comparator, and the differential control voltage is directly applied across the anodes and the cathodes of the varactor diodes.
Abstract:
An amplitude frequency characteristic adjustment circuit 106 is provided downstream of and connected to a distortion generation circuit 105. An amplitude difference between low-frequency-side and high-frequency-side distortion voltages is adjusted by the amplitude frequency characteristic adjustment circuit 106, and then their amplitudes and phases are adjusted by a vector adjustment circuit 107. This configuration makes it possible to suppress simultaneously both of low-frequency-side and high-frequency-side distortion voltages of a distortion generated by a wide-band class-AB power amplifier even if they are different in amplitude and phase.
Abstract:
Provided is a distortion-compensated amplifying circuit capable of suppressing distortion without attenuating a level of carrier components, and further obtaining a larger amount of suppression of distortion, which has not been achievable by conventional distortion-compensated amplifying circuit using a pre-distortion technique. A balanced type amplifying circuit is structured such that amplifiers 115 and 116 placed in parallel are sandwiched by 90-degree hybrid circuits 114 and 117. The 90-degree hybrid circuit 114 is supplied with an original signal including carrier components and a distortion signal including distortion equal in amplitude and opposite in phase (having a phase difference of 180 degrees) to distortion that occurs when the original signal is amplified by the amplifiers 115 and 116. The 90-degree hybrid circuit 114 performs a process of differential amplification with a phase difference of 180 degrees between the original signal and the distortion signal. Then, the amplified original signal and distortion signal outputted from the 90-degree hybrid circuit 117 are combined by a directional coupler 118, thereby canceling distortion components included in both signals with each other.
Abstract:
A balun design incorporating the functions of a splitter (combiner) which can be employed in a high power amplifier circuit configuration. The balun is formed of a dielectric multilayer board with conductor patterns on each conductor pattern layer. The balun includes the propagation of a half of an input signal to an in-phase output terminal, and also propagating a fourth of the input signal to first and second opposite-phase output terminals, the signal propagated to the first and second opposite-phase output terminals lagging 180 degrees behind the signal propagated to the in-phase output terminal. The balun provides the output signals at the first and second opposite-phase output terminals 180° out of phase employing through holes in the main line and coupling lines for promoting electromagnetic coupling therebetween.