摘要:
The invention prevents an uneven display on an organic EL display panel by reducing characteristic variation of a driving transistor among pixels. A gate signal line for supplying a gate signal and a drain signal line for supplying a display signal are crossing each other. Four split driving TFTs of P-channel type are provided in a pixel, and drains of the driving TFTs are connected with anodes of split organic EL elements, respectively. A common gate of the driving TFTs is connected with a pixel selecting TFT.
摘要:
A device has a first transistor and a second transistor wherein a channel length direction of the first transistor extends along a first direction and a channel length direction of the second transistor extends along a second direction intersecting the first direction, and the second transistor is formed on a same substrate as the first transistor. A first channel region and a second channel region are formed in semiconductor layers which are simultaneously formed and a mobility of the semiconductor film has an anisotropy in the first and second directions. With this structure, transistors having different mobilities can be obtained while using the semiconductor films formed on the same substrate and from a same material. For example, it is possible to form a transistor in which a high resistance is required using a semiconductor layer of the same characteristics as that in a transistor in which a high speed operation is desired, on the same substrate and with a minimum area.
摘要:
An inter-layer insulating film and a gate insulating film which are positioned on the optical path of light from an organic EL element to be externally emitted, for example, located under a transparent electrode, are removed. Because SiO2 films having a refractive index which differs significantly from refractive indexes of other films are used for these films, there was a problem of light attenuation in these layers. Such light attenuation can be reduced by removing these layers located in the region through which light from the organic EL element passes.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
On a substrate, there is disposed a gate electrode having a section of a trapezoidal configuration expanded toward the substrate. The gate electrode is covered with a silicon nitride film having a thickness T1 of 400 Å, and a silicon oxide film having a thickness T2 of 1200 Åis formed on the silicon nitride film. A polycrystalline silicon film constructing an active region is formed on a gate insulating film constituted of the silicon nitride film and the silicon oxide film. By forming the silicon oxide film in a sufficient thickness of 1200 Åor more, and further forming the silicon nitride film 23 of 400 Åor more, a thin-film transistor cannot easily be influenced by a stepped portion formed by the gate electrode, and withstanding voltage of the gate insulating film of the thin-film transistor can be enhanced.
摘要:
A vertically aligned type liquid crystal display includes a liquid crystal layer disposed between a plurality of pixel electrodes and a common electrode and containing vertically aligned liquid crystal molecules, the orientation of the liquid crystal molecules being controlled by electric field. An orientation control window is formed in the common electrode. A distance Wp between adjacent pixel electrodes and/or a width Ws of the orientation control window is selected so as to satisfy Wp≧d/2 and/or Ws≧d/2, where d is a distance (or a cell gap) between the pixel electrodes and the common electrode. Viewing angle is widened and a viewing angle characteristic is improved, and abnormal orientation or grittiness of an image is eliminated.
摘要翻译:垂直取向型液晶显示器包括设置在多个像素电极和公共电极之间并且包含垂直取向的液晶分子的液晶层,液晶分子的取向由电场控制。 在公共电极中形成取向控制窗。 选择相邻像素电极之间的距离Wp和/或取向控制窗口的宽度Ws,以满足Wp> = d / 2和/或Ws> = d / 2,其中d是距离(或者单元间隙 )在像素电极和公共电极之间。 视角加宽,视角特性提高,图像异常取向或粗糙度得以消除。
摘要:
Regarding an element having a channel width W greater than a pitch P of a pulse laser beam, a direction of the channel width W of a channel region CH is inclined with respect to a direction of a major axis of a line beam LB. Consequently, even if a defective crystallization region R is caused by an nonuniform intensity of an irradiated region in laser annealing forming p-Si of a p-Si TFT LCD, the whole channel width W of the channel region CH does not overlap the defective crystallization region R. Therefore, even if the defective crystallization region R is generated, element characteristics are not affected. Thus, the manufacturing yield of an excellent p-Si LCD can be enhanced.
摘要:
A line beam is irradiated such that edge lines of the beam extend in a direction at an angle of 45° with respect to the vertical direction or the horizontal direction. As a result, a laser defective crystallization region R′ where the grain size has not become sufficiently large due to unevenness in intensity of the line beam passes at 45° across the carrier path connecting source and drain regions S and D to each other. The defective crystallization region R′ thus does not completely divide between the contact region CT, i.e., the carrier path between the source and drain regions. Therefore, a carrier path CP can be securely maintained without passing through the defective crystallization region R′, so that the ON-current is prevented from being reduced. Deterioration or unevenness in transistor characteristics caused by unevenness in intensity of laser irradiation can thus be prevented.
摘要:
Reflectance of a p-Si film crystallized by laser annealing is measured, a wave length dependency of the reflectance is found, and a first order rate of change is calculated to determine a minimum value near a wave length of 500 nm. The value is to be an inherent optical value under the laser power and relates to a grain size measured by Secco etching or the like. A number of correspondence between the optical value and the grain size are recorded and linearly plotted. By calculating the optical value from the reflectance in the p-Si film at in-line, the grain size is correspondingly determined. Thus, the semiconductor film can be in-line monitored, thereby improving a yield and saving a cost in producing a semiconductor device.