摘要:
An inter-layer insulating film and a gate insulating film which are positioned on the optical path of light from an organic EL element to be externally emitted, for example, located under a transparent electrode, are removed. Because SiO2 films having a refractive index which differs significantly from refractive indexes of other films are used for these films, there was a problem of light attenuation in these layers. Such light attenuation can be reduced by removing these layers located in the region through which light from the organic EL element passes.
摘要:
A display device having a plurality of pixels and which realizes a color display using emitted light of at least two wavelengths, wherein each pixel has a microresonator structure formed between a lower reflective film formed on a side near a substrate and an upper reflective film formed above the lower reflective film with an organic light emitting element layer therebetween. The lower reflective film is made of a metal thin film and a conductive resonator spacer layer which functions as a first electrode is provided between the lower reflective film and the organic light emitting element layer. A thickness of the conductive resonator spacer layer is changed by changing a number of layers or a number of remaining layers of a transparent conductive metal oxide layer made of ITO and a light transmissive layer 210 made of SiNx or the like corresponding to the light emission wavelength. The thickness can be changed based on the thicknesses of the ITO layer and the SiNx layer to be formed and removed by selectively removing an amorphous ITO layer or SiNx layer at upper layers using a polycrystalline ITO at a lower layer as an etching stopper from above the polycrystalline ITO. Light obtained in the organic light emitting element layer is intensified by the microresonator structure in which the optical length is adjusted by the conductive resonator spacer layer and is emitted to the outside.
摘要:
A display device includes a plurality of pixels and realizes a color display using emitted light of at least two wavelengths. Each pixel has a microresonator structure formed between a lower reflective film formed on a side near a substrate and an upper reflective film formed above the lower reflective film with an organic light emitting element layer therebetween. A conductive resonator spacer layer is provided between the lower reflective film and the organic light emitting element layer. Light obtained in the organic light emitting element layer is intensified by the microresonator structure in which the optical length is adjusted by the conductive resonator spacer layer and is emitted to the outside.
摘要:
A first moisture blocking layer formed of a silicon type nitride film such as SiNx or the like is formed over the entire surface so as to cover a drain electrode and a source electrode of a TFT. On the first moisture blocking layer, a first planarization film formed of an organic material is provided. On the first planarization film, a second moisture blocking layer formed of SiNx or the like is provided. In the peripheral region, the second moisture blocking layer extends down on the first moisture blocking layer and is connected with the first moisture blocking layer. Also, a sealing glass is bonded to the second moisture blocking layer using the sealing member. By enclosing the first planarization film by the first moisture blocking layer and the second moisture blocking layer, intrusion of external moisture can be effectively prevented.
摘要:
This invention provides an organic EL display device automatically correcting light emission intensity of a display portion in accordance with intensity of external light, in which the number of components is reduced and sensitivity in detection of an external light sensor is improved. An organic EL element of top emission type, a driving TFT for driving the organic EL element, which is formed of a TFT of top gate type, and an external light sensor formed of a TFT of bottom gate type are integrally formed on a same glass substrate. Since the external light sensor is formed of a TFT of bottom gate type, external light is not blocked by a gate electrode, thereby improving sensitivity in detection of the external light.
摘要:
A device has a first transistor and a second transistor wherein a channel length direction of the first transistor extends along a first direction and a channel length direction of the second transistor extends along a second direction intersecting the first direction, and the second transistor is formed on a same substrate as the first transistor. A first channel region and a second channel region are formed in semiconductor layers which are simultaneously formed and a mobility of the semiconductor film has an anisotropy in the first and second directions. With this structure, transistors having different mobilities can be obtained while using the semiconductor films formed on the same substrate and from a same material. For example, it is possible to form a transistor in which a high resistance is required using a semiconductor layer of the same characteristics as that in a transistor in which a high speed operation is desired, on the same substrate and with a minimum area.
摘要:
A liquid crystal display unit is described, which includes a first substrate, a second substrate opposing to the first substrate, pixel driving elements, first and second insulation layers, a planarizing film and a liquid crystal layer. The pixel driving elements are disposed on the first substrate and between the first and second substrates. The first insulation layer is deposited over the first substrate and the pixel driving elements. The planarizing film is formed on the first insulation layer. This planarizing film provides a substantially flat surface over the first substrate to minimize a height of a step present between an area corresponding to each pixel driving element and an area locating adjacent to the pixel driving element on the first substrate. The second insulation layer is formed on the planarizing film. The display electrodes are formed on the second insulation layer and electrically connected to the pixel driving elements, respectively. The liquid crystal layer is located between the first substrate and said second substrate.
摘要:
To provide a manufacturing method of thin film transistors (TFT) using poly-silicone and having an LDD structure. In particular, the LDD sections of the TFTs are formed in an improved method so as to achieve a high throughput and stable performance of the TFTs. To be specific, the LD region is doped at a low concentration in the ion implantation method which includes mass spectrometry because high controllability over a dose is required. On the other hand, the source and drain regions are doped at a higher concentration than the LD region in the ion showering method which does not include mass spectrometry. Using the ion showering method, poly-crystal silicon can be doped such that less doping damage is caused thereto. This makes it possible to apply a lower temperature for annealing, such as RTA, to activate doped impurities so as to prevent the substrate from being curved. Further, combination of the ion implantation method and the showering method achieves a high throughput production of TFTs having stable performance.
摘要:
A dry etching method includes the steps of etching a transparent electrode film by reactive ion etching with a first etching gas, changing the first etching gas to a second etching gas, and etching the transparent electrode film by reactive ion etching with the second etching gas. A chlorine containing gas is employed as the second etching gas.
摘要:
A first contact hole is formed penetrating a gate insulating film, on which a gate electrode is formed and simultaneously a first contact is formed in the first contact hole. A second contact hole penetrating an interlayer insulating film is formed, and a second contact is formed in the second contact hole. A third contact hole is formed penetrating a planarization film, and an electrode is formed in the third contact hole. By using a plurality of contact holes for electrically connecting the electrode and a semiconductor film, the aspect ratio of each contact hole can be reduced, thereby achieving improvement in yield, high-level integration due to a reduction in difference in area between upper and bottom surfaces of the contact, and other advantageous improvements.