摘要:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
摘要:
Secondary electrons emitted from a sample (W) by an electron beam irradiation is deflected by a beam separator (77), and is deflected again in a perpendicular direction by an aberration correction electrostatic deflector (711) to form a magnified image on the principal plane of an auxiliary lens (712). The secondary electron beam diverged from the auxiliary lens (712) passes through axial chromatic aberration correction lenses (714-717) and images on a principal plane of an auxiliary lens (718) for a magnifying lens (719). The magnified image is formed in a position spaced apart from the optical axis. Therefore, when the secondary electron beam diverged from the auxiliary lens (712) is incident on the axial chromatic aberration correction lenses without any change, large abaxial aberration occurs. To avoid it, the auxiliary lens (712) is used to form the image of an NA aperture (724) in substantially a middle (723) in the light axis direction of the axial chromatic aberration correction lenses (714-717).
摘要:
The present invention provides an electron beam apparatus which can capture images at high speeds even using an area sensor which senses a small number of frames per second, by deflecting a primary electron beam by a deflector to irradiate each of sub-visual fields which are formed by dividing an evaluation area on a sample surface, and detecting secondary electrons containing information on the sample surface in each of the sub-visual fields by a detecting device. For this purpose, the detecting device 26 of the electron beam apparatus comprises a plurality of unit detectors 24-1 each including an area sensor CCD 1 (˜CCD 14), a bundle of optical fibers 25 having one end coupled to a detection plane of the area sensor, an FOP coated on the other end of the bundle of optical fibers and formed with a scintillator, on which a secondary electron beam emitted from the sub-visual fields are focused. An electromagnetic deflector deflects the secondary electron beam emitted from the sub-visual fields each time the electron beam is irradiated to a next sub-visual field to move the secondary electron beams over the surfaces of the FOPs of the unit detectors. Since image information can be fetched from each unit detector during exposure of the other unit detectors, images can be captured at high speeds.
摘要:
A sample is evaluated at a high throughput by reducing axial chromatic aberration and increasing the transmittance of secondary electrons. Electron beams emitted from an electron gun 1 are irradiated onto a sample 7 through a primary electro-optical system, and electrons consequently emitted from the sample are detected by a detector 12 through a secondary electro-optical system. A Wien filter 8 comprising a multi-pole lens for correcting axial chromatic aberration is disposed between a magnification lens 10 in the secondary electro-optical system and a beam separator 5 for separating a primary electron beam and a secondary electron beam, for correcting axial chromatic aberration caused by an objective lens 14 which comprises an electromagnetic lens having a magnetic gap defined on a sample side.
摘要:
An electron beam apparatus for capturing images by deflecting a primary electron beam by a deflector to irradiate each of sub-visual fields which are formed by dividing an evaluation area on a sample surface, and detecting secondary electrons containing information on the sample surface in each of the sub-visual fields by a detecting device. The detecting device includes a plurality of unit detectors each including an area sensor, a bundle of optical fibers having one end coupled to a detection plane of the area sensor, and an FOP coated on the other end of the bundle of optical fibers and formed with a scintillator, on which a secondary electron beam emitted from the respective sub-visual field is focused. An electromagnetic deflector deflects the secondary electron beam each time the electron beam is irradiated to the next sub-visual field to move the secondary electron beams over the surfaces of the FOPs.