摘要:
A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic “00” state, a logic “01” state, a logic “10” state and a logic “11” state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic “0” state is represented by a mathematical expression (1+f)R. The logic “1” state is represented by a mathematical expression (n+f)R. The logic “2” state is represented by a mathematical expression (1+nf)R. The logic “3” state is represented by a mathematical expression n(1+f)R.
摘要:
A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
摘要:
Memory cells including a semiconductor layer having at least two source/drain regions disposed below a surface of the semiconductor layer and separated by a channel region; a lower insulating layer disposed above the channel region; a charge storage layer disposed above the lower insulating layer; an upper insulating multi-layer structure disposed above the charge storage layer, wherein the upper insulating multi-layer structure comprises a polysilicon material layer interposed between a first dielectric layer and a second dielectric layer; and a gate disposed above the upper insulating multi-layer structure are described along with arrays thereof and methods of operation.
摘要:
A memory device that selectably exhibits first and second logic levels. A first conductive material has a first surface with a first memory layer formed thereon, and a second conductive material has a second surface with a second memory layer formed thereon. A connective conductive layer joins the first and second memory layers and places the same in electrical contact. The structure is designed so that the first memory layer has a cross-sectional area less than that of the second memory layer.
摘要:
A memory device has a sidewall insulating member with a sidewall insulating member length according to a first spacer layer thickness. A first electrode formed from a second spacer layer having a first electrode length according to a thickness of a second spacer layer and a second electrode formed from the second spacer layer having a second electrode length according to the thickness of the second spacer layer are formed on sidewalls of the sidewall insulating member. A bridge of memory material having a bridge width extends from a top surface of the first electrode to a top surface of the second electrode across a top surface of the sidewall insulating member, wherein the bridge comprises memory material.
摘要:
A semiconductor structure with improved capacitance of bit lines includes a substrate, a stacked memory structure, a plurality of bit lines, a first stair contact structure, a first group of transistor structures and a first conductive line. The first stair contact structure is formed on the substrate and includes conductive planes and insulating planes stacked alternately. The conductive planes are separated from each other by the insulating planes for connecting the bit lines to the stacked memory structure by stairs. The first group of transistor structures is formed in a first bulk area where the bit lines pass through and then connect to the conductive planes. The first group of transistor structures has a first gate around the first bulk area. The first conductive line is connected to the first gate to control the voltage applied to the first gate.
摘要:
A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
摘要:
An air tunnel floating gate memory cell includes an air tunnel defined over a substrate. A first polysilicon layer (floating gate) is defined over the air tunnel. An oxide layer is disposed over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the air tunnel. A second polysilicon layer, functioning as a word line, is defined over the oxide layer. A method for making an air tunnel floating gate memory cell is also disclosed. A sacrificial layer is formed over a substrate. A first polysilicon layer is formed over the sacrificial layer. An oxide layer is deposited over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the sacrificial layer. A hot phosphoric acid (H3PO4) dip is used to etch away the sacrificial layer to form an air tunnel.
摘要:
A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.
摘要:
A memory device comprises first and second electrodes with a memory element and a buffer layer located between and electrically coupled to them. The memory element comprises one or more metal oxygen compounds. The buffer layer comprises at least one of an oxide and a nitride. Another memory device comprises first and second electrodes with a memory element and a buffer layer, having a thickness of less than 50 Å, located between and electrically coupled to them. The memory comprises one or more metal oxygen compounds. An example of a method of fabricating a memory device includes forming first and second electrodes. A memory, located between and electrically coupled to the first and the second electrodes, is formed; the memory comprises one or more metal oxygen compounds and the buffer layer comprises at least one of an oxide and a nitride.