摘要:
A spin-on formulation that is useful in stripping an ion implanted photoresist is provided that includes an aqueous solution of a water soluble polymer containing at least one acidic functional group, and at least one lanthanide metal-containing oxidant. The spin-on formulation is applied to an ion implanted photoresist and baked to form a modified photoresist. The modified photoresist is soluble in aqueous, acid or organic solvents. As such one of the aforementioned solvents can be used to completely strip the ion implanted photoresist as well as any photoresist residue that may be present. A rinse step can follow the stripping of the modified photoresist.
摘要:
Techniques for increasing conductivity of graphene films by chemical doping are provided. In one aspect, a method for increasing conductivity of a graphene film includes the following steps. The graphene film is formed from one or more graphene sheets. The graphene sheets are exposed to a solution having a one-electron oxidant configured to dope the graphene sheets to increase a conductivity thereof, thereby increasing the overall conductivity of the film. The graphene film can be formed prior to the graphene sheets being exposed to the one-electron oxidant solution. Alternatively, the graphene sheets can be exposed to the one-electron oxidant solution prior to the graphene film being formed. A method of fabricating a transparent electrode on a photovoltaic device from a graphene film is also provided.
摘要:
A nanopore capture system may include a material configured to pass through a nanopore device in a controlled manner based upon its interaction with the nanopore device. The system may also include a capture mechanism connected to one end of the material. The capture mechanism may be configured to catch a particular type of molecule while ignoring other types of molecules. The system may also include a controller to manipulate and/or detect the particular type of molecule.
摘要:
A method and system are disclosed for doping a semiconductor substrate. In one embodiment, the method comprises forming a carbon free layer of phosphoric acid on a semiconductor substrate, and diffusing phosphorous from the layer of phosphoric acid in the substrate to form an activated phosphorous dopant therein. In an embodiment, the semiconductor substrate is immersed in a solution of a phosphorous compound to form a layer of the phosphorous compound on the substrate, and this layer of phosphorous is processed to form the layer of phosphoric acid. In an embodiment, this processing may include hydrolyzing the layer of the phosphorous compound to form the layer of phosphoric acid. In one embodiment, an oxide cap layer is formed on the phosphoric acid layer to form a capped substrate. The capped substrate may be annealed to diffuse the phosphorous in the substrate and to form the activated dopant.
摘要:
A photosensitive monolayer is self-assembled on an oxide surface. The chemical compound of the photosensitive monolayer has three components. A first end group provides covalent bonds with the oxide surface for self assembly on the oxide surface. A photosensitive group that dissociates upon exposure to ultraviolet radiation is linked to the first end group. A second end group linked to the photosensitive group provides hydrophobicity. Upon exposure to the ultraviolet radiation, the dissociated photosensitive group is cleaved and forms a hydrophilic derivative in the exposed region, rendering the exposed region hydrophilic. Carbon nanotubes or nanocrystals applied in an aqueous dispersion are selectively attracted to the hydrophilic exposed region to from electrostatic bonding with the hydrophilic surface of the cleaved photosensitive group.
摘要:
A spin-on formulation that is useful in stripping an ion implanted photoresist is provided that includes an aqueous solution of a water soluble polymer containing at least one acidic functional group, and at least one lanthanide metal-containing oxidant. The spin-on formulation is applied to an ion implanted photoresist and baked to form a modified photoresist. The modified photoresist is soluble in aqueous, acid or organic solvents. As such one of the aforementioned solvents can be used to completely strip the ion implanted photoresist as well as any photoresist residue that may be present. A rinse step can follow the stripping of the modified photoresist.
摘要:
The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.
摘要:
A semiconductor nanowire is coated with a chemical coating layer that selectively attaches to the semiconductor material and which forms a dye in a chemical reaction. The dye layer comprises a material that absorbs electromagnetic radiation. A portion of the absorbed energy induces electronic excitation in the chemical coating layer from which additional free charge carriers are temporarily donated into the semiconductor nanowire. Thus, the conductivity of the semiconductor nanowire increases upon illumination on the dye layer. The semiconductor nanowire, and the resulting dye layer collective operate as a detector for electromagnetic radiation.
摘要:
Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
摘要:
Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.