Abstract:
Disclosed embodiments relate to a system that changes transmitter and/or receiver settings to deal with reliability issues caused by a predetermined event, such as a change in a power state or a clock start event. One embodiment uses a first setting while operating a transmitter during a normal operating mode, and a second setting while operating the transmitter during a transient period following the predetermined event. A second embodiment uses similar first and second settings in a receiver, or in both a transmitter and a receiver employed on one side of a bidirectional link The first and second settings can be associated with different swing voltages, edge rates, equalizations and/or impedances.
Abstract:
An integrated circuit includes a voltage regulator to supply a regulated voltage and a data output that couples to an unterminated transmission line. The circuit draws a variable amount of power from the voltage regulator according to the data. The voltage regulator includes a first current generation circuit to provide a data transition-dependent current.
Abstract:
A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.