摘要:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
摘要:
This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
摘要:
A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
摘要:
This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
摘要:
A communication system includes a continuous-time linear equalizer in the clock forward path. The equalizer may be adjusted to minimize clock jitter, including jitter associated with the first few clock edges after the clock signal is enabled. Reducing early-edge jitter reduces the power and circuit complexity otherwise needed to turn the system on quickly.
摘要:
A method is disclosed. The method includes sampling a data signal having a voltage value at an expected edge time of the data signal. A first alpha value is generated, and a second alpha value generated in dependence upon the voltage value. The data signal is adjusted by the first alpha value to derive a first adjusted signal. The data signal is adjusted by the second alpha value to derive a second adjusted signal. The first adjusted signal is sampled to output a first data value while the second adjusted signal is sampled to output a second data value. A selection is made between the first data value and the second data value as a function of a prior received data value to determine a received data value.
摘要:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
摘要:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
摘要:
This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
摘要:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.