Abstract:
A process for selectively sealing a capacitive element incorporated in a non-volatile memory cell integrated in a semiconductor substrate, the cell including a MOS transistor. The process includes: forming the MOS transistor on the semiconductor substrate; depositing an insulating layer over the substrate and MOS transistor; depositing a first metal layer to form, using a photolithographic technique, a lower electrode of the capacitive element; depositing a dielectric layer onto the first metal layer; depositing a second metal layer onto the dielectric layer; depositing a layer of a sealing material onto the second metal layer, the sealing material being impermeable to hydrogen; and defining the dielectric layer, second metal layer, and sealing layer by a single photolithographic defining step, so to form an upper electrode in the second metal layer and concurrently pattern the dielectric layer and seal the capacitive element.
Abstract:
A contact structure for semiconductor devices which are integrated on a semiconductor layer is provided. The structure comprises at least one MOS device and at least one capacitor element where the contact is provided at an opening formed in an insulating layer which overlies at least in part the semiconductor layer. Further, the opening has its surface edges, walls and bottom coated with a metal layer and filled with an insulating layer.
Abstract:
The cells of the stacked type each comprise a MOS transistor formed in an active region of a substrate of semiconductor material and a capacitor formed above the active region; each MOS transistor has a first and a second conductive region and a control electrode and each capacitor has a first and a second plate separated by a dielectric region material, for example, ferroelectric one. The first conductive region of each MOS transistor is connected to the first plate of a respective capacitor, the second conductive region of each MOS transistor is connected to a respective bit line, the control electrode of each MOS transistor is connected to a respective word line, the second plate of each capacitor is connected to a respective plate line. The plate lines run perpendicular to the bit line and parallel to the word lines. At least two cells adjacent in a parallel direction to the bit lines share the same dielectric region material. In this way, the manufacturing process is not critical and the size of the cells is minimal.
Abstract:
Presented is a ferroelectric non-volatile memory cell in a semiconductor substrate that has a MOS device connected in parallel to a ferroelectric capacitor. The MOS device has first and second conduction terminals and is covered with an insulating layer. The ferroelectric capacitor has a lower electrode formed on the insulating layer above the first conduction terminals and are electrically coupled to them. The lower electrode of the ferroelectric capacitor is covered with a layer of ferroelectric material and coupled capacitively to an upper electrode. The upper electrode is formed above the second conduction terminals and are electrically connected thereto, and extends over the ferroelectric material to at least partially overlap the lower electrode. Also presented is a non-volatile memory matrix that includes a plurality of the ferroelectric memory cells that are organized into rows and columns.
Abstract:
A process for forming, on a semiconductor substrate, an isolation structure between two zones of an integrated circuit wherein active regions of electronic components integrated thereto have already been defined, comprises the steps of: defining an isolation region on a layer of silicon oxide overlying a silicon layer; selectively etching the silicon to provide the isolation region; growing thermal oxide over the interior surfaces of the isolation structure; depositing dielectric conformingly; and oxidizing the deposited dielectric.
Abstract:
The process provides first for the accomplishment of low-doping body regions at the sides and under a gate region and then the accomplishment of high-doping body regions inside said low-doping body regions and self-aligned with said gate region. There is thus obtained an MOS power transistor with vertical current flow which has high-doping body regions self-aligned with said gate region and with a reduced junction depth.
Abstract:
An MOS integrated circuit device with improved electrostatic protection capability includes high and low voltage rails for bringing externally-supplied power to points within the chip. Input bonding pads communicate input signals to the chip from external sources. Clamping circuitry connected to the input bonding pads clamps the input bonding pads to the low voltage rail during an electrostatic discharge event appearing on the input bonding pads. A receiver circuit is coupled to each input bonding pad. Each receiver circuit has a receiver input node, a receiver output node, and overvoltage-sensitive MOS circuitry between the input and output nodes. A conductor connects each input bonding pad to its receiver circuit. The conductor has a length greater than the distance between the input bonding pad and its receiver circuit. The conductor has an inductance sufficient to prevent high frequency components of ESD events received at an input bonding pad from reaching its receiver circuit. The conductor includes at least one fold for extending the length of the conductor to exceed the distance between the input bonding pad and the receiver input node.
Abstract:
A high-frequency bipolar transistor structure includes a base region of a first conductivity type formed in a silicon layer of a second conductivity type, the base region comprising an intrinsic base region surrounded by an extrinsic base region, an emitter region of the second conductivity type formed inside the intrinsic base region, the extrinsic base region and the emitter region being contacted by a first polysilicon layer and a second polysilicon layer respectively. The first and the second polysilicon layers are respectively contacted by a base metal electrode and an emitter metal electrode. Between the extrinsic base region and the first polysilicon layer, a silicide layer is provided to reduce the extrinsic base resistance of the bipolar transistor.
Abstract:
A DMOS device structure includes a lightly doped semiconductor layer of a first conductivity type, a plurality of lightly doped semiconductor regions of a second conductivity type extending from a top surface of the lightly doped semiconductor layer thereinto, source regions of the first conductivity type contained in the lightly doped semiconductor regions and defining channel regions. The lightly doped semiconductor regions are contained in respective enhancement regions of the lightly doped semiconductor layer of the same conductivity type as, but with a lower resistivity than, the lightly doped semiconductor layer.
Abstract:
A PIC structure includes a lightly doped semiconductor layer of the first conductivity type superimposed over a heavily doped semiconductor substrate of a second conductivity type, wherein a Vertical IGBT and a driving and control circuit including at least first conductivity type-channel MOSFETs are integrated. The MOSFETs are provided inside well regions of the second conductivity type which are included in at least one lightly doped region of the first conductivity type completely surrounded and isolated from the lightly doped layer of the first conductivity type by means of a respective isolated region of a second conductivity type.