Abstract:
A communications device and method of communicating using a communications device is disclosed for performing device-to-device communications. The communications device is configured to divide data for transmission into a plurality of data units, to encode a first of the data units, at the communications device for transmission to a destination communications device in accordance with a hybrid automatic repeat request, HARQ, protocol. The encoding provides redundant data, which can improve an integrity of correctly recovering the first data unit when received by the destination communications device and provide an indication of whether the first data unit has been received correctly. The communications device transmits the encoded data unit to the destination communications device, and either receives, from the destination communications device, an acknowledgement message, ACK, indicating that the data unit has been received correctly by the destination communications device, or if, after a predetermined time has elapsed, an ACK message is not received by the communications device, then retransmits at least part of the encoded data unit to the destination communications device in accordance with the HARQ process, the communications device assuming that the destination communications device determined that the data unit was not received correctly in accordance with a decoding process performed by the destination communications device. Alternatively the communications device receives, from the destination communications device, a negative acknowledgement message, NACK, providing an indication that the destination communications device determined that the data unit was not received correctly in accordance with a process of decoding the received encoded data unit performed by the destination communications device, or if, after a predetermined time has elapsed, an ACK message is not received then the communications devices encodes a next one of the data units, and transmitting the next encoded data unit to the destination communications device in accordance with the HARQ protocol.
Abstract:
An apparatus and method for allocating transmission resources to MTC-type terminals and transmitting data in mobile telecommunication systems in dependence upon the capability of the RF receiver equipment of those terminals. Where a virtual carrier is established to carry data for a given MTC-type device, the position of the center frequency for that virtual carrier is assigned on the basis of both the capability of the RF receiver equipment of that terminal and the degree of traffic congestion on the frequency band at which the virtual carrier has been established.
Abstract:
A communications device transmitting/receiving signals to/from a mobile communications network includes one or more network elements providing a wireless access interface for the communications device. The wireless access interface includes plural communications resource elements across a host frequency range of a host carrier, and a first section of the communications resources within a first frequency range for preferable allocation to reduced capability devices forming a first reduced bandwidth carrier and a second section of the communications resources within a second frequency range for preferable allocation to the reduced capability devices forming a second reduced bandwidth carrier. Each of the first and second frequency ranges is within the host frequency range. The communications device is configured with a reduced capability to receive the signals only within a frequency bandwidth less than the host frequency range and equal to at least one of the first frequency range or the second frequency range.
Abstract:
A communications device establishes a communications context for communicating data packets using a packet communications bearer from the communications device via mobile communications network in a connected state and releases communications context when in an idle state. A controller is configured in combination with a receiver to receive signalling information providing an indication of one or more functions performed by at least one of the receiver, a transmitter, or the controller which can be changed in a power saving state, and when in either the idle state or the connected state, to enter the power saving state in which the one or more of the operations performed by at least one of the receiver, the transmitter, or the controller are changed in accordance with the indication of the changed functions received in the signalling information from the mobile communications network.
Abstract:
A method of transmitting/receiving data between a communications device and a mobile communications network including a wireless access interface providing communications resources within a system bandwidth and in time divided units allocated to communications devices of first and second types having different capabilities. The method generates, at the communications device, a random access message, by selecting a sequence from a predetermined set of sequences, which have been allocated to the communications devices of the second type and transmitting the random access message from the communications device to the wireless communications network, and in response to the random access message, receives a random access response at the communications device transmitted according to the capability of the communications device of second type, the random access message being recognized as from a communications device of second type from the selected one of the predetermined sequences allocated to the communications devices of second type.
Abstract:
A communications terminal includes a transmitter to transmit signals, a receiver to receive signals, and a controller to control the transmitter and receiver. The controller includes an input buffer receiving data packets for transmission. The controller can identify whether the received data packets are delay tolerant or non-delay tolerant, to determine a current state for communications for transmitting the data packets and based on predetermined conditions including a current state for radio communications, an amount of the delay tolerant data packets in the input buffer, and an amount of the non-delay tolerant packets in the input buffer, either transmit the non-delay tolerant data packets or transmit the non-delay tolerant data packets and the delay tolerant data packets from the input buffer to a mobile communications network using the transmitter, or maintain the delay tolerant or non-delay tolerant data packets in the input buffer until the predetermined conditions are satisfied.
Abstract:
A communications device transmitting/receiving signals to/from a mobile communications network includes one or more network elements providing a wireless access interface for the communications device. The wireless access interface includes plural communications resource elements across a host frequency range of a host carrier, and a first section of the communications resources within a first frequency range for preferable allocation to reduced capability devices forming a first virtual carrier and a second section of the communications resources within a second frequency range for preferable allocation to the reduced capability devices forming a second virtual carrier. Each of the first and second frequency ranges is within the host frequency range. The communications device is configured with a reduced capability to receive the signals only within a frequency bandwidth less than the host frequency range and equal to at least one of the first frequency range or the second frequency range.
Abstract:
A mobile communications terminal divides a plurality of multipath signals associated with radio signals transmitted from a plurality of base stations using an S-CCPCH into groups by base station, i.e., by transmit source, maximum-ratio-combines a plurality of multipath signals associated with each same base station which is a transmit source into a composite signal, decodes the composite signal, and selects a composite signal having a good decoded result from among decoded composite signals.
Abstract:
The present disclosure provides a communication network node for providing data to a distributed ledger, wherein the node has circuitry configured to: provide a user data management part for separating sensitive user data and non-sensitive user data, and provide the non-sensitive user data to the distributed ledger.
Abstract:
A method for transmitting data by a communications device in a cell of a wireless communications network, the method comprising receiving an indication of a plurality of configured grants, each of the configured grants allocating a sequence of communications resources for the transmission of the data in the cell by the communications device, receiving an indication of a mapping between each of a plurality of logical channels and one or more of the plurality of configured grants, and transmitting a first portion of the data associated with a first logical channel of the plurality of logical channels using communications resources allocated by one of the plurality of configured grants, in accordance with the mapping.