Abstract:
An integrated structure includes a first MOS transistor with a first controllable gate region overlying a first gate dielectric and a second MOS transistor neighboring the first MOS transistor and having a second controllable gate region overlying the first gate dielectric. A common conductive region overlies the first and second gate regions and is separated therefrom by a second gate dielectric. The common conductive region includes a continuous element located over a portion of the first and second gate regions and a branch extending downward from the continuous element toward the substrate as far as the first gate dielectric. The branch located between the first and second gate regions.
Abstract:
An operation for writing at least one datum in at least one memory cell of the electrically erasable and programmable read-only memory type comprises at least one step of erasing or of programming of the cell by a corresponding erasing or programming pulse. The correct or incorrect conducting of the writing operation is checked by an analysis of the form of the erasing or programming pulse during the corresponding erasing or programming step. The result of this analysis is representative of the writing operation being conducted correctly or incorrectly.
Abstract:
An integrated structure includes a first MOS transistor with a first controllable gate region overlying a first gate dielectric and a second MOS transistor neighboring the first MOS transistor and having a second controllable gate region overlying the first gate dielectric. A common conductive region overlies the first and second gate regions and is separated therefrom by a second gate dielectric. The common conductive region includes a continuous element located over a portion of the first and second gate regions and a branch extending downward from the continuous element toward the substrate as far as the first gate dielectric. The branch located between the first and second gate regions.
Abstract:
A non-volatile memory device includes a matrix memory plane with columns of memory words respectively formed on each row of the memory plane by groups of memory cells and control elements respectively associated with the memory words of each row. At least some of the control elements associated with the memory words of the corresponding row form at least one control block of B control elements disposed next to one another, adjacent to a memory block containing the B memory words disposed next to one another and associated with these B control elements, a first electrically-conducting link connecting one of the B control elements to all the control electrodes of the state transistors of the corresponding group of memory cells and B-1 second electrically-conducting link(s) respectively connecting the B-1 control element(s) to all the control electrodes of the state transistors of the B-1 corresponding group(s) of memory cells.
Abstract:
A memory device includes at least one memory cell having a first SRAM-type elementary memory cell having two inverters coupled to one another crosswise and two groups, each having at least one non-volatile elementary memory cell. The non-volatile elementary memory cells of the two groups are coupled firstly to a supply terminal and secondly to the outputs and to the inputs of the two inverters via a controllable interconnection stage.
Abstract:
A memory device includes a memory cell with an elementary SRAM-type cell and an elementary module coupled between a supply terminal and the elementary SRAM-type cell. The elementary module has a single nonvolatile EEPROM elementary memory cell that includes a floating gate transistor. The elementary module also has a controllable interconnection stage that can be controlled by a control signal external to the memory cell. The nonvolatile elementary memory cell and the controllable interconnection stage are connected to one another. The floating gate transistor of the nonvolatile memory cell is controllable to be turned off when a data item stored in the elementary SRAM-type cell is programmed into the nonvolatile elementary cell.
Abstract:
A low pass filter comprises a filter input node configured to receive a first logic signal, a filter output node configured to supply a second logic signal, a resistive element comprising a first terminal coupled to the input node and a second terminal coupled to the output node, and a capacitive element comprising a first terminal coupled to the output node and a second terminal. The filter further comprises an inverting gate having a first terminal coupled to the input node and a second terminal coupled to the second terminal of the capacitive element.