Abstract:
A reception (RX) node using mutual resonance includes a target resonator configured to receive power via mutual resonance with a source resonator; a controller configured to wake up in response to the received power, determine a point in time at which the controller woke up to be a point in time at which synchronization with other RX nodes is performed, and generate a data packet, and a sensor configured to wake up in response to the received power, sense information.
Abstract:
An apparatus for changing a wireless charging mode includes a power receiving antenna configured to receive power from a power supply using a first frequency band, a communication circuit configured to communicate with the power supply using a second frequency band, a power management circuit configured to charge a battery using the received power, and a control circuit configured to be electrically connected with the power management circuit. In addition, various embodiments ascertained through the specification are possible.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
An apparatus and method of using near field communication (NFC) and wireless power transmission (WPT) are provided. A power receiving apparatus includes a resonator configured to receive a power and to output the power. The power receiving apparatus further includes a near field communication (NFC) receiver configured to perform wireless communication using the power output by the resonator. The power receiving apparatus further includes a wireless power transmission (WPT) receiver configured to supply a voltage using the power output by the resonator. The power receiving apparatus further includes a connecting unit configured to selectively connect the resonator to either the NFC receiver or the WPT receiver. The power receiving apparatus further includes a mode selector configured to control the connecting unit to selectively connect the resonator to either the NFC receiver or the WPT receiver based on the power output by the resonator.
Abstract:
A resonator has an increased isolation for stable wireless power transmission. A material that reduces resonance coupling may be disposed in a space between each of a plurality of resonators and a resonator adjacent to each of the plurality of resonators. A material that reduces resonance coupling may be disposed on a plane opposite to a direction in which a resonator resonates. Power at an operating frequency set to be equal to or within a predetermined range of a frequency corresponding to a resonant mode may be injected into a plurality of transmission resonators.
Abstract:
A resonator having increased isolation includes a first resonator having first characteristics, and configured to resonate with another resonator having the first characteristics; and a second resonator having second characteristics, and configured to resonate with another resonator having the second characteristics; wherein the resonator has an arrangement and a structure that minimizes a coupling between the first resonator and the second resonator.
Abstract:
A wireless power transmission apparatus includes a resonance unit including resonators and configured to form a magnetic resonant coupling with another resonator, and a feeding unit configured to transmit alternating current (AC) power to one of the resonators. The wireless power transmission apparatus further includes a controller configured to determine a value of a capacitor connected to one of the resonators, based on a magnitude of a magnetic field formed by the resonance unit.
Abstract:
Provided is an apparatus and method to control a resonance frequency of a device subject to wireless power transmission interference. The apparatus and method include supplying power from a printed circuit board (PCB) to an integrated circuit (IC) during exposure to a wireless power transmission environment experiencing mutual resonance. The apparatus and method also include a resonance frequency of the PCB based on a change in the supply of power.
Abstract:
An apparatus and a method for balanced power amplification are provided. An amplifier includes a splitter configured to split an input signal into a first input signal and a second input signal that include a 90° phase difference. The amplifier further includes a first power amplifier (PA) configured to amplify the first input signal to generate a first output signal. The amplifier further includes a second PA configured to amplify the second input signal to generate a second output signal. The amplifier further includes a combiner configured to combine the first output signal and the second output signal that include the 90° phase difference to generate an output signal.