Abstract:
Devices that include a near field transducer (NFT), the NFT including a peg having five exposed surfaces, the peg including a first material; an overlying structure; at least one intermixing layer, positioned between the peg and the overlying structure, the at least one intermixing layer positioned on at least one of the five surfaces of the peg, the intermixing layer including at least the first material and a second material.
Abstract:
A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
Abstract:
Disclosed herein is an apparatus that includes a near field transducer positioned adjacent to an air bearing surface of the apparatus; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes a first and second portion, with the first portion being adjacent the near field transducer and the second portion being adjacent the first magnetic pole, the first portion including a plasmonic material, and the second portion including a diffusion blocking material.
Abstract:
A write pole structure disclosed herein includes a write pole, a trailing shield, and a high magnetic moment (HMM) material layer on a surface of the trailing shield facing the write pole.
Abstract:
An apparatus that includes a near field transducer, the near field transducer including silver (Ag) and at least one other element or compound, wherein the at least one other element or compound is selected from: copper (Cu), palladium (Pd), gold (Au), zirconium (Zr), zirconium oxide (ZrO), platinum (Pt), geranium (Ge), nickel (Ni), tungsten (W), cobalt (Co), rhodium (Rh), ruthenium (Ru), tantalum (Ta), chromium (Cr), aluminum (Al), vanadium (V), iridium (Ir), titanium (Ti), magnesium (Mg), iron (Fe), molybdenum (Mo), silicon (Si), or combinations thereof oxides of V, Zr, Mg, calcium (Ca), Al, Ti, Si, cesium (Ce), yttrium (Y), Ta, W or thorium (Th), Co, or combinations thereof; or nitrides of Ta, Al, Ti, Si, indium (In), Fe, Zr, Cu, W, boron (B), halfnium (Hf), or combinations thereof.
Abstract:
A magneto-resistive reader includes a first magnetic shield element, a second magnetic shield element and a magneto-resistive sensor stack separating the first magnetic shield element from the second magnetic shield element. The first shield element includes two ferromagnetic anisotropic layers separated by a grain growth suppression layer.
Abstract:
Methods of forming a near field transducer (NFT), the methods including the steps of depositing plasmonic material on a substrate; laser annealing at least a portion of the deposited plasmonic material at a wavelength from 100 nm to 2.0 micrometers (μm) to induce liquid phase epitaxy (LPE) in the annealed deposited plasmonic material to form a epitaxially modified plasmonic material; and forming a NFT from at least a portion of the epitaxially modified plasmonic material are disclosed as well as other methods and devices such as those formed.
Abstract:
Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
Abstract:
Methods of forming a layer of magnetic material on a substrate, the method including: configuring a substrate in a chamber; controlling the temperature of the substrate at a substrate temperature, the substrate temperature being at or below about 250° C.; and introducing one or more precursors into the chamber, the one or more precursors including: cobalt (Co), nickel (Ni), iron (Fe), or combinations thereof, wherein the precursors chemically decompose at the substrate temperature, and wherein a layer of magnetic material is formed on the substrate, the magnetic material including at least a portion of the one or more precursors, and the magnetic material having a magnetic flux density of at least about 1 Tesla (T).
Abstract:
Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.