Abstract:
An object is to provide a semiconductor device with stable electric characteristics in which an oxide semiconductor is used. The impurity concentration in the oxide semiconductor layer is reduced in the following manner: a silicon oxide layer including many defects typified by dangling bonds is formed in contact with the oxide semiconductor layer, and an impurity such as hydrogen or moisture (a hydrogen atom or a compound including a hydrogen atom such as H2O) included in the oxide semiconductor layer is diffused into the silicon oxide layer. Further, a mixed region is provided between the oxide semiconductor layer and the silicon oxide layer. The mixed region includes oxygen, silicon, and at least one kind of metal element that is included in the oxide semiconductor.
Abstract:
An object is to provide a thin film transistor having favorable electric characteristics and a semiconductor device including the thin film transistor as a switching element. The thin film transistor includes a gate electrode formed over an insulating surface, a gate insulating film over the gate electrode, an oxide semiconductor film which overlaps with the gate electrode over the gate insulating film and which includes a layer where the concentration of one or a plurality of metals contained in the oxide semiconductor is higher than that in other regions, a pair of metal oxide films formed over the oxide semiconductor film and in contact with the layer, and a source electrode and a drain electrode in contact with the metal oxide films. The metal oxide films are formed by oxidation of a metal contained in the source electrode and the drain electrode.
Abstract:
In a thin film transistor, an increase in off current or negative shift of the threshold voltage is prevented. In the thin film transistor, a buffer layer is provided between an oxide semiconductor layer and each of a source electrode layer and a drain electrode layer. The buffer layer includes a metal oxide layer which is an insulator or a semiconductor over a middle portion of the oxide semiconductor layer. The metal oxide layer functions as a protective layer for suppressing incorporation of impurities into the oxide semiconductor layer. Therefore, in the thin film transistor, an increase in off current or negative shift of the threshold voltage can be prevented.
Abstract:
It is an object to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a semiconductor device including an inverted staggered thin film transistor whose semiconductor layer is an oxide semiconductor layer, a buffer layer is provided over the oxide semiconductor layer. The buffer layer is in contact with a channel formation region of the semiconductor layer and source and drain electrode layers. A film of the buffer layer has resistance distribution. A region provided over the channel formation region of the semiconductor layer has lower electrical conductivity than the channel formation region of the semiconductor layer, and a region in contact with the source and drain electrode layers has higher electrical conductivity than the channel formation region of the semiconductor layer.
Abstract:
It is an object to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a semiconductor device including an inverted staggered thin film transistor whose semiconductor layer is an oxide semiconductor layer, a buffer layer is provided over the oxide semiconductor layer. The buffer layer is in contact with a channel formation region of the semiconductor layer and source and drain electrode layers. A film of the buffer layer has resistance distribution. A region provided over the channel formation region of the semiconductor layer has lower electrical conductivity than the channel formation region of the semiconductor layer, and a region in contact with the source and drain electrode layers has higher electrical conductivity than the channel formation region of the semiconductor layer.
Abstract:
Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.
Abstract:
In a thin film transistor, an increase in off current or negative shift of the threshold voltage is prevented. In the thin film transistor, a buffer layer is provided between an oxide semiconductor layer and each of a source electrode layer and a drain electrode layer. The buffer layer includes a metal oxide layer which is an insulator or a semiconductor over a middle portion of the oxide semiconductor layer. The metal oxide layer functions as a protective layer for suppressing incorporation of impurities into the oxide semiconductor layer. Therefore, in the thin film transistor, an increase in off current or negative shift of the threshold voltage can be prevented.