摘要:
A method for forming a semiconductor structure includes providing a substrate; forming a gate stack of a flash memory cell, wherein a top portion of the gate stack comprises a capping layer; forming a gate having at least a portion over the capping layer; and reducing a thickness of the portion of the gate over the capping layer. The topography height difference between the flash memory cell and MOS devices on the same chip is reduced.
摘要:
A method for integrating copper with an MIM capacitor during the formation the MIM capacitor. The MIM capacitor is generally formed upon a substrate and at least one copper layer is deposited upon the substrate and layers thereof to form at least one metal layer from which the MIM capacitor is formed, such that the MIM capacitor may be adapted for use with an embedded DRAM device. The MIM capacitor comprises a low-temperature MIM capacitor. At least one DRAM crown photo layer may be formed upon the substrate and layers thereof to form the MIM capacitor. The number of additional lithographic steps required in BEOL manufacturing operations is thus only one, while the capacitance of the MIM capacitor can be improved greatly because the sequential process of the DRAM crown photo patterning steps may be altered.
摘要:
A method for forming a semiconductor structure includes providing a substrate; forming a gate stack of a flash memory cell, wherein a top portion of the gate stack comprises a capping layer; forming a gate having at least a portion over the capping layer; and reducing a thickness of the portion of the gate over the capping layer. The topography height difference between the flash memory cell and MOS devices on the same chip is reduced.
摘要:
Hemi-spherical structure and method for fabricating the same. A device includes discrete pillar regions on a substrate, and a pattern layer on the discrete support structures and the substrate. The pattern layer has hemi-spherical film regions on the discrete support structures respectively, and planarized portions on the substrate between the hemi-spherical film regions. Each of the hemi-spherical film regions in a position corresponding to each of the support structures serves as a hemi-spherical structure.
摘要:
A new method to form MOS gates in an integrated circuit device is achieved. The method is particularly useful for forming floating gates in split gate flash transistors. The method comprises providing a substrate. A dielectric layer is formed overlying the substrate. A conductor layer is formed overlying the dielectric layer. A first masking layer is deposited overlying the conductor layer. The first masking layer is patterned to selectively expose the conductor layer. A second masking layer is deposited overlying the first masking layer and the conductor layer. The second masking layer is etched back to form spacers on sidewalls of the first masking layer. The conductor layer is etched through where exposed by the first masking layer and the spacers to thereby form MOS gates in the manufacture of the integrated circuit device.
摘要:
A new method to form MOS gates in an integrated circuit device is achieved. The method is particularly useful for forming floating gates in split gate flash transistors. The method comprises providing a substrate. A dielectric layer is formed overlying the substrate. A conductor layer is formed overlying the dielectric layer. A first masking layer is deposited overlying the conductor layer. The first masking layer is patterned to selectively expose the conductor layer. A second masking layer is deposited overlying the first masking layer and the conductor layer. The second masking layer is etched back to form spacers on sidewalls of the first masking layer. The conductor layer is etched through where exposed by the first masking layer and the spacers to thereby form MOS gates in the manufacture of the integrated circuit device.
摘要:
A method for forming a spacer layer adjoining a substantially vertical first sidewall of a topographic feature within a microelectronic product employs an anisotropic etching of a reentrant spacer material layer formed upon the topographic feature. The spacer layer is formed at least in part with a substantially vertical second sidewall laterally separated from the substantially vertical first sidewall. The method is useful for forming spacer layers within field effect transistor devices.
摘要:
A new method is provided for the creation of spacers for the CMOS gate electrode. A layer of a spacer material is deposited over the gate structure; a layer of photoresist is deposited over the layer of spacer material. The layer of photoresist of the invention is partially stripped removing the photoresist from above the gate structure and providing a thinner layer of photoresist over the surrounding layer of spacer material. The layer of spacer material is partially etched whereby the layer of photoresist serves as a partial etch stop layer. The remainder of the photoresist is removed, the spacer material is further etched using a dry etch whereby a thin layer of spacer material (oxide) remains deposited over the surface of the substrate. As a final step the thin layer of spacer material (oxide) is removed from the surface of the substrate using a wet etch.
摘要:
The present invention provides a method of forming a Self-aligned contact with fewer process steps. The invention includes a three step insitu process of (1) a first descum step, (2) a dry etch step and (3) second descum step followed by (4) an isotropic etch step. The process comprises coating, exposing, and developing, and baking a photoresist layer over an insulating layer. In an important process stage, three steps are performed: (1) an insitu first descum step, (2) a dry etch step and (3) a second descum step. The dry etch step forms a first self-aligned contact opening. Next, the first contact opening is isotropically etched forming a smoother second contact opening 44. The photoresist layer 30 is then removed. Lastly, a metal layer 60 is deposited in said second self aligned contact opening 44. The invention reduces cycle time and eliminates several process steps while maintaining high yields. The smoother second contact opening 44 provides better metal adhesion.
摘要:
An integrated circuit structure includes a dielectric layer having an upper portion and a lower portion. The dielectric layer is either an inter-layer dielectric (ILD) or an inter-metal dielectric (IMD). A phase change random access memory (PCRAM) cell includes a phase change strip, wherein the phase change strip is on the lower portion and has a top surface lower than a top surface of the dielectric layer, and a bottom surface higher than a bottom surface of the dielectric layer. A first conductive column is electrically connected to the phase change strip. The first conductive column extends from the top surface of the dielectric layer down into the dielectric layer. A second conductive column is in a peripheral region. The second conductive column extends from the top surface of the dielectric layer down into the dielectric layer. The first conductive column and the second conductive column have different heights.