摘要:
By performing sophisticated anneal techniques, such as laser anneal, flash anneal and the like, for a metal silicide formation, such as nickel silicide, the risk of nickel silicide defects in sensitive device regions, such as SRAM pass gates, may be significantly reduced. Also, the activation of dopants may be performed in a highly localized manner, so that undue damage of gate insulation layers may be avoided when activating and re-crystallizing drain and source regions.
摘要:
By performing an anisotropic resist modification prior to the actual resist trimming process, the profile of the end portions of the resist features may be significantly enhanced, for instance by providing substantially vertical sidewall portions. Consequently, an overlap of gate electrodes with the respective isolation structures may be obtained, while nevertheless the probability for a short circuit between opposing end portions of the gate electrodes may be significantly reduced, thereby providing the potential for further scaling down device dimensions.
摘要:
By forming a stressed semiconductor material in a gate electrode, a biaxial tensile strain may be induced in the channel region, thereby significantly increasing the charge carrier mobility. This concept may be advantageously combined with additional strain-inducing sources, such as embedded strained semiconductor materials in the drain and source regions, thereby providing the potential for enhancing transistor performance without contributing to process complexity.
摘要:
The present invention provides a technique that enables the formation of a recessed spacer element by using an anisotropically deposited etch stop layer. Accordingly, in subsequent cleaning processes, material residues of the etch stop layer may be efficiently removed from upper sidewall portions of a line element, thereby increasing the available area for a diffusion path in a subsequent silicidation process. The anisotropic deposition of the etch stop layer may be accomplished by high density plasma enhanced CVD or by directional sputter techniques.
摘要:
Disclosed herein are various methods of forming metal silicide regions on semiconductor devices. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, performing a selective metal silicide formation process to form metal silicide regions in source/drain regions formed in or above the substrate, after forming the metal silicide regions, removing the sacrificial gate structure to define a gate opening and forming a replacement gate structure in the gate opening, the replacement gate structure comprised of at least one metal layer.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
Dielectric cap layers of sophisticated high-k metal gate electrode structures may be efficiently removed on the basis of a sacrificial fill material, thereby reliably preserving integrity of a protective sidewall spacer structure, which in turn may result in superior uniformity of the threshold voltage of the transistors. The sacrificial fill material may be provided in the form of an organic material that may be reduced in thickness on the basis of a wet developing process, thereby enabling a high degree of process controllability.
摘要:
In a dual stress liner approach, unwanted material provided between closely spaced gate electrode structures may be removed to a significant degree on the basis of a wet chemical etch process, thereby reducing the risk of creating patterning-related irregularities. Consequently, the probability of contact failures in sophisticated interlayer dielectric material systems formed on the basis of a dual stress liner approach may be reduced.
摘要:
By selectively modifying the spacer width, for instance, by reducing the spacer width on the basis of implantation masks, an individual adaptation of dopant profiles may be achieved without unduly contributing to the overall process complexity. For example, in sophisticated integrated circuits, the performance of transistors of the same or different conductivity type may be individually adjusted by providing different sidewall spacer widths on the basis of an appropriate masking regime.
摘要:
When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage, the dielectric cap layer of the gate electrode structures may be efficiently removed on the basis of a carbon spacer element, which may thus preserve the integrity of the silicon nitride spacer structure. Thereafter, the sacrificial carbon spacer may be removed substantially without affecting other device areas, such as isolation structures, active regions and the like, which may contribute to superior process conditions during the further processing of the semiconductor device.