摘要:
Disclosed herein are various methods of forming metal silicide regions on semiconductor devices. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, performing a selective metal silicide formation process to form metal silicide regions in source/drain regions formed in or above the substrate, after forming the metal silicide regions, removing the sacrificial gate structure to define a gate opening and forming a replacement gate structure in the gate opening, the replacement gate structure comprised of at least one metal layer.
摘要:
Disclosed herein are various methods of forming metal silicide regions on semiconductor devices. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, performing a selective metal silicide formation process to form metal silicide regions in source/drain regions formed in or above the substrate, after forming the metal silicide regions, removing the sacrificial gate structure to define a gate opening and forming a replacement gate structure in the gate opening, the replacement gate structure comprised of at least one metal layer.
摘要:
Methods are provided for fabricating a CMOS integrated circuit having a dual stress layer without NiSi hole formation. One method includes depositing a tensile stress layer overlying a semiconductor substrate. A portion of the tensile stress layer is removed, leaving a remaining portion, before applying a curing radiation. A curing radiation is then applied to the remaining portion; and a compressive stress layer is deposited overlying the semiconductor substrate and the remaining portion.
摘要:
An MOSFET device having a Silicide layer of uniform thickness and which is substantially free of “Spotty” NiSi-type holes, and methods for its fabrication, are provided. One such method involves simultaneously depositing a metal layer (e.g. Ni) over the active and open areas of a semiconductor substrate. The depth to which some or all of the metal is transferred into the substrate is determined by thermal budget. A rapid thermal annealing process is employed to produce a NiSi layer of a uniform thickness in both the active and open areas. Upon achieving a NiSi layer of a desired thickness, the excess metal is removed from the substrate surface.
摘要:
Methods are provided for fabricating a CMOS integrated circuit having a dual stress layer without NiSi hole formation. One method includes depositing a tensile stress layer overlying a semiconductor substrate. A portion of the tensile stress layer is removed, leaving a remaining portion, before applying a curing radiation. A curing radiation is then applied to the remaining portion; and a compressive stress layer is deposited overlying the semiconductor substrate and the remaining portion.
摘要:
Methods are provided for fabricating an integrated circuit that includes a deep trench capacitor. One method includes fabricating a plurality of transistors on a semiconductor substrate, the plurality of transistors each including gate structures, source and drain regions, and silicide contacts to the source and drain regions. A trench is then etched into the semiconductor substrate in proximity to the drain region of a selected transistor. The trench is filled with a layer of metal in contact with the semiconductor substrate, a layer of dielectric material overlying the layer of metal, and a second metal overlying the layer of dielectric material. A metal contact is then formed coupling the second metal to the silicide contact on the drain region of the selected transistor. A bit line is formed contacting the source region of the selected transistor and a word line is formed contacting the gate structure of the transistor.
摘要:
When forming sophisticated semiconductor devices, a replacement gate approach may be applied in combination with a self-aligned contact regime by forming the self-aligned contacts prior to replacing the placeholder material of the gate electrode structures.
摘要:
When forming capacitive structures in a metallization system, such as in a dynamic RAM area, placeholder metal regions may be formed together with “regular” metal features, thereby achieving a very efficient overall process flow. At a certain manufacturing stage, the metal of the placeholder metal region may be removed on the basis of a wet chemical etch recipe followed by the deposition of the electrode materials and the dielectric materials for the capacitive structure without unduly affecting other portions of the metallization system. In this manner, very high capacitance values may be realized on the basis of a very efficient overall manufacturing flow.
摘要:
Disclosed herein is a method of forming a semiconductor device. In one example, the method includes forming a gate electrode structure above a semiconducting substrate, wherein the gate electrode structure includes a gate insulation layer, a gate electrode, a first sidewall spacer positioned proximate the gate electrode, and a gate cap layer, and forming an etch stop layer above the gate cap layer and above the substrate proximate the gate electrode structure. The method further includes forming a layer of spacer material above the etch stop layer, and performing at least one first planarization process to remove the portion of said layer of spacer material positioned above the gate electrode, the portion of the etch stop layer positioned above the gate electrode and the gate cap layer.
摘要:
When forming substrate diodes in SOI devices, superior diode characteristics may be preserved by providing an additional spacer element in the substrate opening and/or by using a superior contact patterning regime on the basis of a sacrificial fill material. In both cases, integrity of a metal silicide in the substrate diode may be preserved, thereby avoiding undue deviations from the desired ideal diode characteristics. In some illustrative embodiments, the superior diode characteristics may be achieved without requiring any additional lithography step.