摘要:
A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a germanium (Ge) material layer formed on the semiconductor substrate, a diffusion barrier layer formed on the Ge material layer, a high-k dielectric having a high dielectric constant greater than approximately 3.9 formed over the diffusion barrier layer, and a conductive electrode layer formed above the high-k dielectric layer.
摘要:
A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a high-k dielectric having a high dielectric constant greater than approximately 3.9, a germanium (Ge) material layer interfacing with the high-k dielectric, and a conductive electrode layer disposed above the high-k dielectric or the Ge material layer. The gate stack optimizes a shift of the flatband voltage or the threshold voltage to obtain high performance in p-FET devices.
摘要:
A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
摘要:
A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
摘要:
A transistor includes a semiconductor layer and a gate structure located on the semiconductor layer. The gate structure includes a first dielectric layer. The first dielectric layer includes a doped region and an undoped region below the doped region. A second dielectric layer is located on the first dielectric layer, and a first metal nitride layer is located on the second dielectric layer. The doped region of the first dielectric layer comprises dopants from the second dielectric layer. Source and drain regions in the semiconductor layer are located on opposite sides of the gate structure.
摘要:
A disposable gate structure and a gate spacer are formed on a semiconductor substrate. A disposable gate material portion is removed and a high dielectric constant (high-k) gate dielectric layer and a metal nitride layer are formed in a gate cavity and over a planarization dielectric layer. The exposed surface portion of the metal nitride layer is converted into a metal oxynitride by a surface oxidation process that employs exposure to ozonated water or an oxidant-including solution. A conductive gate fill material is deposited in the gate cavity and planarized to provide a metal gate structure. Oxygen in the metal oxynitride diffuses, during a subsequent anneal process, into a high-k gate dielectric underneath to lower and stabilize the work function of the metal gate without significant change in the effective oxide thickness (EOT) of the high-k gate dielectric.
摘要:
A quarter-gap p-type field effect transistor (PFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a gate metal layer located over the high-k dielectric layer, the gate metal layer including titanium nitride and having a thickness of about 20 angstroms; and a metal contact formed over the gate stack. A quarter-gap n-type field effect transistor (NFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a first gate metal layer located over the high-k dielectric layer, the first gate metal layer including titanium nitride; and a metal contact formed over the gate stack.
摘要:
A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
摘要:
A quarter-gap p-type field effect transistor (PFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a gate metal layer located over the high-k dielectric layer, the gate metal layer including titanium nitride and having a thickness of about 20 angstroms; and a metal contact formed over the gate stack. A quarter-gap n-type field effect transistor (NFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a first gate metal layer located over the high-k dielectric layer, the first gate metal layer including titanium nitride; and a metal contact formed over the gate stack.
摘要:
A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a germanium (Ge) material layer formed on the semiconductor substrate, a diffusion barrier layer formed on the Ge material layer, a high-k dielectric having a high dielectric constant greater than approximately 3.9 formed over the diffusion barrier layer, and a conductive electrode layer formed above the high-k dielectric layer.