Integrated circuits having photonic interconnect layers and methods for fabricating same
    53.
    发明申请
    Integrated circuits having photonic interconnect layers and methods for fabricating same 有权
    具有光互连层的集成电路及其制造方法

    公开(公告)号:US20080246106A1

    公开(公告)日:2008-10-09

    申请号:US11732549

    申请日:2007-04-03

    IPC分类号: H01L31/0232

    摘要: Various embodiments of the present invention are directed to integrated circuits having photonic interconnect layers and methods for fabricating the integrated circuits. In one embodiment of the present invention, an integrated circuit comprises an electronic device layer and one or more photonic interconnect layers. The electronic device layer includes one or more electronic devices, and the electronic device layer is attached to a surface of an intermediate layer. One of the photonic interconnect layers is attached to an opposing surface of the intermediate layer, and each of the photonic interconnect layers has at least one photonic device in communication with at least one of the electronic devices of the electronic device layer.

    摘要翻译: 本发明的各种实施例涉及具有光子互连层的集成电路和用于制造集成电路的方法。 在本发明的一个实施例中,集成电路包括电子器件层和一个或多个光子互连层。 电子器件层包括一个或多个电子器件,并且电子器件层附着到中间层的表面。 光子互连层中的一个附着到中间层的相对表面,并且每个光子互连层具有与电子器件层的至少一个电子器件通信的至少一个光子器件。

    Methods and systems for implementing logic gates with spintronic devices located at nanowire crossbar junctions of crossbar arrays
    55.
    发明申请
    Methods and systems for implementing logic gates with spintronic devices located at nanowire crossbar junctions of crossbar arrays 有权
    用于实现位于横杆阵列的纳米线交叉点处的自旋电子器件的逻辑门的方法和系统

    公开(公告)号:US20080100345A1

    公开(公告)日:2008-05-01

    申请号:US11590959

    申请日:2006-10-31

    IPC分类号: H03K19/20

    摘要: Various method and system embodiments of the present invention are directed to implementing serial logic gates using nanowire-crossbar arrays with spintronic devices located at nanowire-crossbar junctions. In one embodiment of the present invention, a nanowire-crossbar array comprises a first nanowire and a number of substantially parallel control nanowires positioned so that each control nanowire overlaps the first nanowire. The nanowire-crossbar array includes a number of spintronic devices. Each spintronic device is configured to connect one of the control nanowires to the first nanowire and operate as a latch for controlling signal transmissions between the control nanowire and the first nanowire.

    摘要翻译: 本发明的各种方法和系统实施例涉及使用位于纳米线交叉点处的自旋电子器件的纳米线交叉阵列来实现串行逻辑门。 在本发明的一个实施例中,纳米线交叉串阵列包括第一纳米线和多个基本上平行的控制纳米线,所述纳米线被定位成使得每个对照纳米线与第一纳米线重叠。 纳米线交叉开关阵列包括许多自旋电子器件。 每个自旋电子设备被配置为将控制纳米线中的一个连接到第一纳米线并且用作用于控制控制纳米线和第一纳米线之间的信号传输的锁存器。

    Electric device having nanoscale wires and gaps
    56.
    发明授权
    Electric device having nanoscale wires and gaps 失效
    具有纳米线和间隙的电器件

    公开(公告)号:US07087946B2

    公开(公告)日:2006-08-08

    申请号:US10697589

    申请日:2003-10-30

    摘要: A method for forming first and second linear structures of a first composition that meet at right angles, there being a gap at the point at which the structures meet. The linear structures are constructed on an etchable crystalline layer having the first composition. First and second self-aligned nanowires of a second composition are grown on this layer and used as masks for etching the layer. The self-aligned nanowires are constructed from a material that has an asymmetric lattice mismatch with respect to the crystalline layer. The gap is sufficiently small to allow one of the structures to act as the gate of a transistor and the other to form the source and drain of the transistor. The gap can be filled with electrically switchable materials thereby converting the transistor to a memory cell.

    摘要翻译: 一种用于形成第一组合物的第一和第二线性结构的方法,所述第一和第二线性结构垂直相交,在所述结构相交点处存在间隙。 线性结构构造在具有第一组成的可蚀刻晶体层上。 在该层上生长第二组合物的第一和第二自对准纳米线,并用作蚀刻该层的掩模。 自对准纳米线由相对于晶体层具有不对称晶格失配的材料构成。 该间隙足够小以允许一个结构用作晶体管的栅极,而另一个则形成晶体管的源极和漏极。 间隙可以用电可切换材料填充,从而将晶体管转换成存储单元。

    Molecular wire transistor (MWT)
    59.
    发明授权

    公开(公告)号:US07030408B1

    公开(公告)日:2006-04-18

    申请号:US09699080

    申请日:2000-10-26

    IPC分类号: H01L35/24

    摘要: Bipolar and field effect molecular wire transistors are provided. The molecular wire transistor comprises a pair of crossed wires, with at least one of the wires comprising a doped semiconductor material. The pair of crossed wires forms a junction where one wire crosses another, one wire being provided with Lewis acid functional groups and the other wire being provided with Lewis base functional groups. If both wires are doped semiconductor, such as silicon, one is P-doped and the other is N-doped. One wire of a given doping comprises the emitter and collector portions and the other wire comprises the base portion, which is formed by modulation doping on the wire containing the emitter and collector at the junction where the wires cross and between the emitter and collector portions, thereby forming a bipolar transistor. Both NPN and PNP bipolar transistors may be formed. Analogously, one wire may comprise doped semiconductor, such as silicon, and the other wire a metal, the doped silicon wire forming the source and drain and the metal wire forming the gate by modulation doping on the doped silicon wire where the wires cross, between the source and drain, to form a field effect transistor. Both P-channel and N-channel FETs may be formed. The construction of both bipolar transistors and FETs on a nanometer scale, which are self-aligned and modulation-doped, is thereby enabled.

    Low-forward-voltage molecular rectifier
    60.
    发明授权
    Low-forward-voltage molecular rectifier 失效
    低电压分子整流器

    公开(公告)号:US07009201B2

    公开(公告)日:2006-03-07

    申请号:US10703266

    申请日:2003-11-07

    IPC分类号: H01L51/00

    摘要: A single molecular species having a low-forward-voltage rectifying property is provided. The molecular species is represented by the formula: CL-IL-A-IR-CR where A is a “conducting” moiety (with a relatively narrow HOMO-LUMO gap), IL and IR are each an “insulating” moiety (with a relatively wide HOMO-LUMO gap), CL is a connecting group for attachment to a first electrode, and CR is a connecting group for attachment to a second electrode. Also, a low-forward-voltage rectifying molecular rectifier is provided, comprising the molecular species attached between the two electrodes. The present teachings provide a set of design rules to build single-molecule rectifying diodes that operate at low forward and large reverse voltages. Such single-molecule rectifying diodes are useful in a variety of nano-scale applications.

    摘要翻译: 提供具有低正向电压整流特性的单一分子种类。 分子种类由以下公式表示:<?in-line-formula description =“In-line Formulas”end =“lead”?> CL-IL-A-IR-CR <?in-line-formula description =“ 其中A是“导电”部分(具有较窄的HOMO-LUMO间隙),IL和IR各自为“绝缘”部分(具有较宽的HOMO-LUMO间隙 )中,CL是用于连接到第一电极的连接组,CR是连接到第二电极的连接组。 此外,提供了一种低电压整流分子整流器,其包括附着在两个电极之间的分子种类。 本教导提供了一组设计规则来构建在低正向和反向电压较低的情况下工作的单分子整流二极管。 这种单分子整流二极管可用于各种纳米级应用。