Abstract:
A blade outer airseal comprising a body having: an inner diameter (ID) surface; an outer diameter (OD) surface; a leading end; a trailing end; a metallic substrate; and a coating system atop the substrate along at least a portion of the inner diameter surface. At least over a first area of the inner diameter surface, the coating system comprises an abradable layer comprising a metallic matrix and a filler. The filler forms at least 20% by volume of the abradable layer with agglomerates or aggregates of oxide particles, the oxide particles having a D50 size ≦200 nm.
Abstract:
A blade outer airseal has a body comprising: an inner diameter (ID) surface; an outer diameter (OD) surface; a leading end; and a trailing end. The airseal body has a metallic substrate and a coating system atop the substrate along at least a portion of the inner diameter surface. At least over a first area of the inner diameter surface, the coating system comprises an abradable layer and a thermal barrier layer between the abradable layer and the substrate; and the thermal barrier layer comprises a ceramic and metallic phases within the ceramic.
Abstract:
An abradable coating for application to a gas turbine engine part is formed from a titanium aluminide alloy, a filler material, and porosity. The coating may be applied to a part such as a casing made from a titanium alloy.
Abstract:
An air seal for use in a gas turbine engine. The seal includes a thermally sprayed abradable seal layer. The abradable material is composed of aluminum powder forming a metal matrix, and co-deposited methyl methacrylate particles and/or hexagonal boron nitride particles embedded as filler in the metal matrix.
Abstract:
The thermal barrier coating includes reactive gadolinia in its microstructures and the embedded gadolinia effectively reacts with CMAS contaminant reducing the damage from CMAS. Moreover, a method to produce a CMAS resistant thermal barrier coating can include a post-treatment to the thermal barrier coating with the reactive gadolinia suspension in sol-gel state.
Abstract:
A component for a gas turbine engine includes an airfoil section including a free end and an abrasive coating sprayed onto the free end, the abrasive coating including a polymer matrix and an abrasive filler, the abraisive filler between about 50%-75% by volume of the abrasive coating.
Abstract:
A seal comprises a housing. A coating has at least two layers with a bond layer to be positioned between a housing and a second hard layer. The second hard layer is formed to be harder than the bond layer. The bond layer has a bond strength greater than or equal to 200 psi and less than or equal to 2000 psi. A gas turbine engine, and a method of forming a coating layer are also disclosed.
Abstract:
According to one embodiment of this disclosure, a coating includes a plurality of elongated reinforcing materials. The coating includes a bond coat in which a first portion of a first elongated reinforcing material is embedded. The coating further includes a ceramic coat adjacent the bond coat in which a second portion of the first elongated reinforcing material is embedded.
Abstract:
A component for a gas turbine engine is described. The component may comprise a body portion formed from a metallic material. The component may further comprise an abrasive surface forming at least one surface of the body portion, and the abrasive surface may be configured to abrade an abradable material. The abrasive surface may be formed from electrical discharge machining of the metallic material.
Abstract:
A thermal barrier system includes a protective coating on a substrate, and a ceramic feature layer attached to the protective coating via an adhesive spray coat.