Abstract:
A phase change ink composition suitable for ink jet printing, including printing on coated paper substrates. In embodiments, the phase change ink composition comprises a bio-renewable crystalline component and amorphous component which provides for a robust ink composition. In embodiments, the amorphous component is derived from low cost, stable and bio-renewable materials comprising aromatic rosin esters.
Abstract:
A phase change ink composition suitable for ink jet printing, including robust printing on coated paper substrates. In embodiments, the phase change ink composition comprises both a crystalline compound and an amorphous compound which are derived from bio-renewable materials. In particular, the present embodiments provide novel crystalline compounds with at least two aromatic moieties for use in the phase change inks.
Abstract:
A phase change ink composition including an amorphous compound; a crystalline compound; a polyester polymer, wherein the polyester has a molecular weight of from about 500 to about 8,000 and a polydispersity index of from about 1.0 to about 8.0; an optional synergist; an optional dispersant; and a colorant. A process including (1) incorporating into an ink jet printing apparatus the phase change ink composition; (2) melting the ink; and (3) causing droplets of the melted ink to be ejected in an imagewise pattern onto a substrate. An ink jet printer stick or pellet including the phase change ink composition.
Abstract:
The disclosure provides a curable ink including a bis-urea gelator having the structure of Formula I. wherein R and R′ each, independently of the other, is a saturated aliphatic hydrocarbon group selected from the group consisting of (1) linear aliphatic groups, (2) branched aliphatic groups, (3) cyclic aliphatic groups, (4) aliphatic groups containing both cyclic and acyclic portions, any carbon atom of the saturated aliphatic hydrocarbon group may be optionally substituted with an alkyl group (cyclic or acyclic), wherein (1) and (2) groups have a carbon number of from about 1 to about 22 carbons, and wherein (3) and (4) groups have a carbon number of from about 4 to about 10 carbons; and X is selected from the group consisting of: (i) an alkylene group, (ii) an arylene group, (iii) an arylalkylene group, and (iv) an alkylarylene group.
Abstract:
A solid ink composition comprises a crystalline compound, an amorphous compound and a pigment concentrate. The pigment concentrate includes a diester crystalline compound, a dispersant and a pigment (magenta/yellow). The incorporation of such pigment concentrate in the solid ink composition produces a stable ink.
Abstract:
A solid ink composition comprises a crystalline compound, an amorphous compound and a pigment concentrate. The pigment concentrate includes a diester crystalline compound, a dispersant and a pigment (magenta/yellow). The incorporation of such pigment concentrate in the solid ink composition produces a stable ink.
Abstract:
The present disclosure is directed to a hybrid conductive ink including: silver nanoparticles and eutectic low melting point alloy particles, wherein a weight ratio of the eutectic low melting point alloy particles and the silver nanoparticles ranges from 1:20 to 1:5. Also provided herein are methods of forming an interconnect including a) depositing a hybrid conductive ink on a conductive element positioned on a substrate, wherein the hybrid conductive ink comprises silver nanoparticles and eutectic low melting point alloy particles, the eutectic low melting point alloy particles and the silver nanoparticles being in a weight ratio from about 1:20 to about 1:5; b) placing an electronic component onto the hybrid conductive ink; c) heating the substrate, conductive element, hybrid conductive ink and electronic component to a temperature sufficient i) to anneal the silver nanoparticles in the hybrid conductive ink and ii) to melt the low melting point eutectic alloy particles, wherein the melted low melting point eutectic alloy flows to occupy spaces between the annealed silver nanoparticles, d) allowing the melted low melting point eutectic alloy of the hybrid conductive ink to harden and fuse to the electronic component and the conductive element, thereby forming an interconnect. Electrical circuits including conductive traces and, optionally, interconnects formed with the hybrid conductive ink are also provided.
Abstract:
Provided herein is a composition for eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers and at least one organoamine stabilizer. Also provided herein is a process for preparing eutectic metal alloy nanoparticles comprising mixing at least one organic polar solvent, at least one organoamine stabilizer, and a eutectic metal alloy to create a mixture; sonicating the mixture at a temperature above the melting point of the eutectic metal alloy; and collecting a composition comprising a plurality of eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers. Further disclosed herein are hybrid conductive ink compositions comprising a component comprising a plurality of metal nanoparticles and a component comprising a plurality of eutectic metal alloy nanoparticles.
Abstract:
A nanoparticle composition comprising a plurality of stabilized metal-containing nanoparticles comprising silver and/or a silver alloy composite. The stabilized metal-containing nanoparticles are prepared by a method comprising reacting a silver compound with a reducing agent comprising a hydrazine compound by incrementally adding the silver compound to a first mixture comprising the reducing agent, a stabilizer and a solvent. The stabilizer comprises a mixture of a first organoamine and a second organoamine, an alkyl moiety of the first organoamine having a longer carbon chain length than the alkyl moiety of the second organoamine. The first organoamine is selected from the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and mixtures thereof. The second organoamine is selected from group consisting of butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine and mixtures thereof.
Abstract:
Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.