Abstract:
A piezoelectric element which includes an adhesion layer made of composite oxide having perovskite structure including at least one of bismuth, manganese, iron, and titanium; a first electrode provided on the adhesion layer and made of metal preferentially oriented in a (100) face; a piezoelectric body layer provided on the first electrode and made of composite oxide having perovskite structure preferentially oriented in the (100) face; and a second electrode provided on the piezoelectric body layer.
Abstract:
A liquid ejecting head includes a pressure chamber substrate where a plurality of spaces to be a pressure chamber along a Y direction are formed in an X direction, a vibration plate that seals the space by being stacked in the pressure chamber substrate, and a piezoelectric element and a supporting unit that are stacked in the vibration plate on an opposite side to the pressure chamber substrate, in which positions at one end in the Y direction are different from each other in a first space and a second space among the plurality of spaces, and the supporting unit suppresses a vibration of the vibration plate by being formed so as to overlap with at least the one end side portion in the first space in a planar view.
Abstract:
A piezoelectric material contains a first component that is a rhombohedral crystal and that is configured to have a complex oxide with a perovskite structure and Curie temperature Tc1, a second component that is a crystal other than a rhombohedral crystal and that is configured to have a complex oxide with a perovskite structure and Curie temperature e Tc2, and a third component that is a rhombohedral crystal and that is configured to have a complex oxide with a perovskite structure and Curie temperature Tc3 different from the first component, and in which Tc2 is higher than Tc1, Tc3 is equal to or higher than Tc2, and a value of (0.1×Tc1+0.9×Tc2) is equal to or lower than 280° C.
Abstract:
A silicon nozzle plate has excellent liquid resistance on an inner surface of a nozzle opening and a discharge surface. A plurality of the nozzle openings are disposed in a silicon substrate of the nozzle plate. A tantalum oxide film formed by atomic layer deposition is disposed on both surfaces of the silicon substrate and the inner surface of the nozzle opening.
Abstract:
A liquid ejection head driving system includes an ink jet head, a driving circuit substrate provided with a driving circuit in which a driving signal is generated, a driving signal wiring that branches an output of the driving circuit into two or more systems, and a plurality of connectors that extract the driving signal wiring for each system, and a flexible flat substrate (FFC) in which a connector connected to a connector of the driving circuit substrate is installed, a driving signal pattern for transmitting the driving signal for each system is formed on a first layer, and a reference potential pattern is formed on a second layer. The driving circuit substrate is configured such that the same number of connectors as the number of wiring substrates are mounted at a position where a direction of insertion and extraction of the connector of the FFC is released.
Abstract:
An inkjet printing head 1 includes a pressure chamber (cavity) 5, a movable film 10A defining a top surface portion of the pressure chamber 5, and a piezoelectric element 9 disposed above the movable film 10A. The piezoelectric element 9 includes a lower electrode 11 formed above the movable film 10A, a piezoelectric film 12 formed above the lower electrode 11, and an upper electrode 13 formed above the piezoelectric film 12. One end portion of an upper wiring 17 is connected to an upper surface of the upper electrode 13. The upper wiring 17 extends from above the upper electrode 13, crosses an outer edge of the pressure chamber 5, and extends outside the pressure chamber 5. The piezoelectric film 12 has an active portion 12A with an upper surface in contact with a lower surface of the upper electrode 13 and an inactive portion 12B extending along a lower surface of the upper wiring 17 from one end portion of the active portion 12A to outside the pressure chamber 5.
Abstract:
A liquid ejecting head includes a pressure chamber forming substrate in which a plurality of spaces to be pressure chambers in communication with nozzles are provided side by side in a nozzle column direction, in which in a region corresponding to the pressure chamber, a lower electrode film is formed with a width of 50% or more and 80% or less of a width of the pressure chamber in the nozzle column direction and the piezoelectric body layer covers the lower electrode film in the nozzle column direction and is formed with a width of 90% or less of the width of the pressure chamber.
Abstract:
An inclined plane which inclines toward a lower plane of a ceiling portion, that is, the lower plane of a communication substrate from a ceiling plane of a second liquid chamber is formed in the second liquid chamber of the communication substrate. Therefore, an individual communication opening is formed, in a state of penetrating the communication substrate from the inclined plane. One end (lower end) of the individual communication opening communicates with the second liquid chamber by being open onto the inclined plane, and the other end (upper end) of the individual communication opening individually communicates with a pressure chamber of a pressure chamber forming substrate by being open onto an upper plane of the communication substrate. When a thickness of the communication substrate is referred to as T, a length of the individual communication opening is referred to as L, and a substantial depth of the second liquid chamber is referred to as D, the dimensions are configured so as to be L+D>T.
Abstract:
An inkjet head includes a substrate that defines a cavity in which ink is stored, a vibrating membrane that is supported by the substrate and that defines the cavity, and a piezoelectric device that is disposed on the vibrating membrane and that changes a volume of the cavity by displacing the vibrating membrane. The piezoelectric device includes a lower electrode, a piezoelectric membrane that is disposed on the lower electrode, and an upper electrode that is disposed on the piezoelectric membrane and that faces the lower electrode with the piezoelectric membrane interposed between the upper electrode and the lower electrode. The piezoelectric membrane includes a columnar structure layer and an amorphous structure layer of a piezoelectric material. The amorphous structure layer is stacked contiguously with the columnar structure layer.
Abstract:
A liquid droplet discharge head includes a nozzle substrate; nozzles, disposed on the nozzle substrate, to discharge a liquid; a pressurized liquid chamber that communicates with the nozzles; a diaphragm forming one wall of the pressurized liquid chamber; an electromechanical transducer element for discharging, disposed on an element mount surface of the diaphragm opposite a side facing the pressurized liquid chamber; and a retainer substrate laminated to the element mount surface of the diaphragm with an adhesive. The subject head is configured to discharge a liquid inside the pressurized liquid chamber from the nozzles while the diaphragm is displaced by a drive voltage applied to the electromechanical transducer element for discharging, and the liquid droplet discharge head further comprising an electromechanical transducer element for inspection that does not perform discharging, disposed on the element mount surface of the diaphragm, to which a voltage is applied so that the diaphragm displaces.